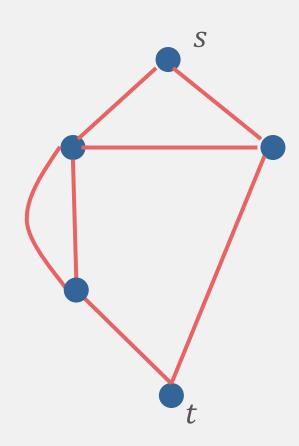
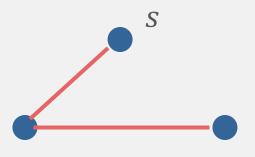
What does the effective resistance of electrical circuits have to do with quantum algorithms?

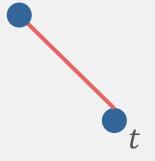
Shelby Kimmel Stacey Jeffery (Caltech)

st-connectivity: is there a path from s to t?



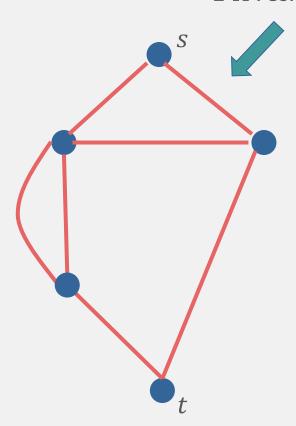
st-connectivity: is there a path from s to t?





We can turn this into a circuit by attaching leads to s and t, and putting 1Ω resistors wherever edges exist.

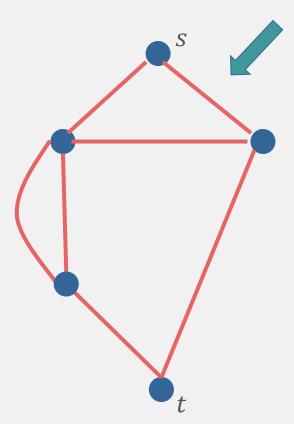
 1Ω resistors



Speed of quantum algorithm for st-connectivity depends on effective resistance of this circuit! (Lower effective resistance -> quicker detection of path)

[Belovs, Reichardt '12]

 1Ω resistors



Applications of st-Connectivity

- Important (social) network problem
- Problem is a useful subroutine for many problems
 - Is there a length-k path? [Belovs, Reichardt '12]
 - Is a graph a forest? [Cade, Montanaro, Belovs '16]
 - Is a graph bipartite? [Cade, Montanaro, Belovs '16]

Applications of st-Connectivity

- Important (social) network problem
- Problem is a useful subroutine for many problems
 - Is there a length-k path?
 - Is a graph a forest?
 - Is a graph bipartite?
 - Boolean formula evaluation

Our results:

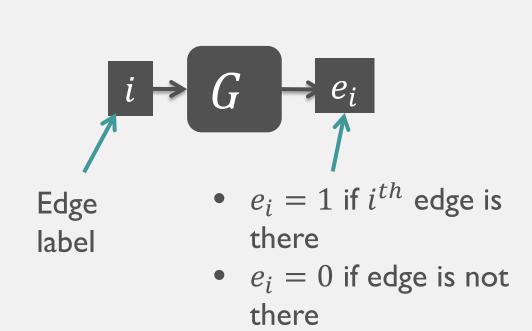
Improved analysis of quantum algorithm for st-connectivity (with even more effective resistance than before!)

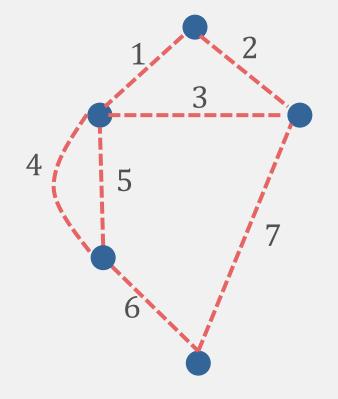
Use this algorithm to get improved quantum algorithm for Boolean formula evaluation

Outline

- Previous algorithm for st-connectivity
- Improved analysis for planar graphs
- Application to Boolean formulas

Black Box Algorithm

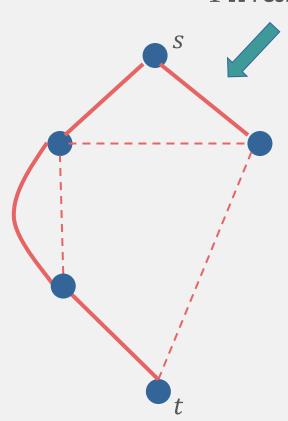




Previous Quantum Algorithm

R(G) is the effective resistance of the circuit created by attaching a voltage between s and t, and $1~\Omega$ resistors at all edges.

 1Ω resistors



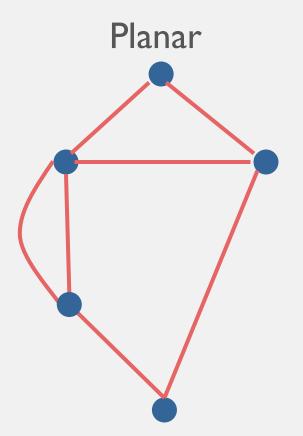
Previous Quantum Algorithm

st-connectivity algorithm time/queries ~

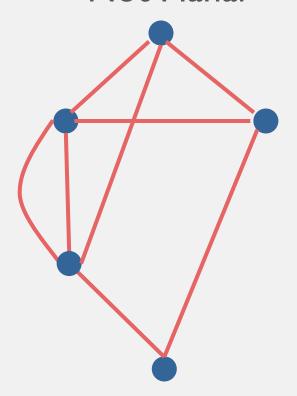
$$\sqrt{\max_{G:connected} R(G)} \sqrt{\max_{G:not\ connected} |G|}$$

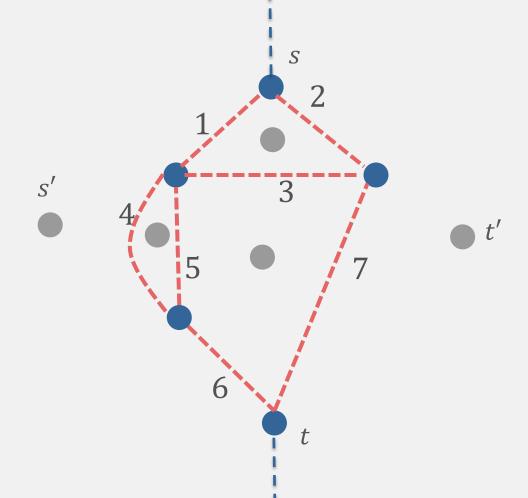
of edges in graph G

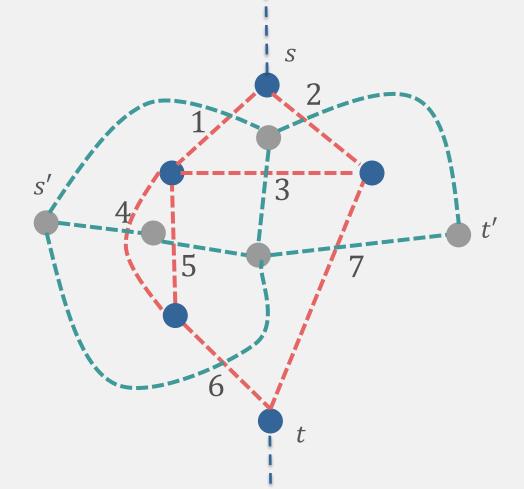
Planar Graph



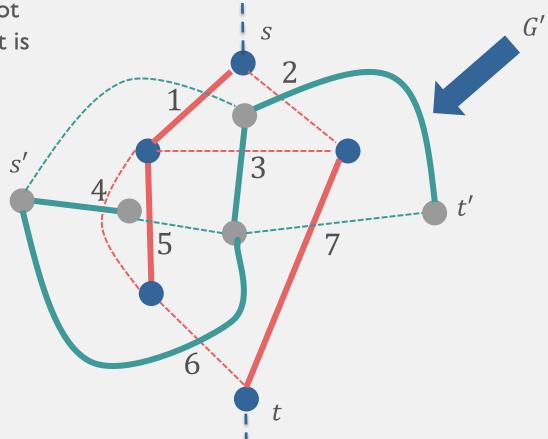
Not Planar





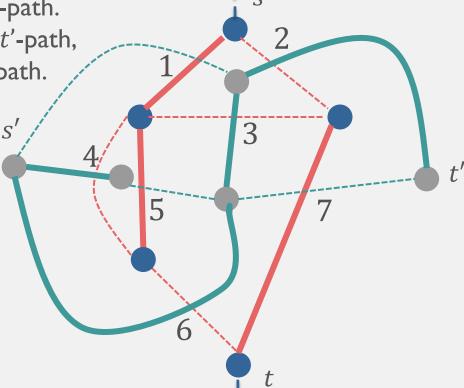


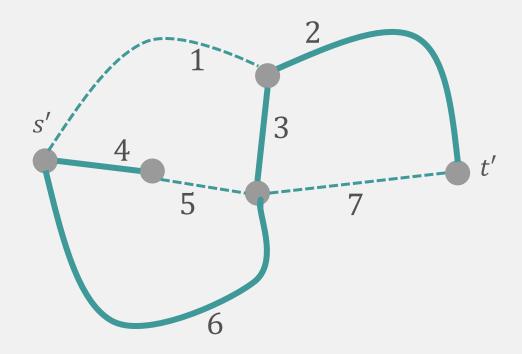
• If an edge is not present in G, it is present in G'



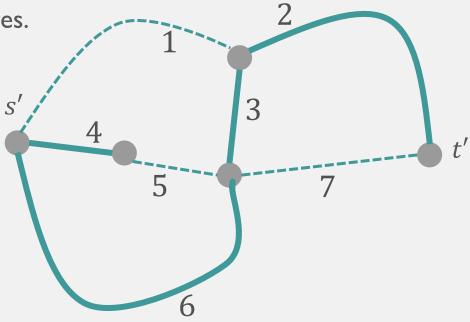
If there is an st-path,
there is no s't'-path.

If there is an s't'-path, there is no st-path.





R(G') is the effective resistance of the circuit created by attaching a voltage between s' and t', and 1Ω resistors at all edges.

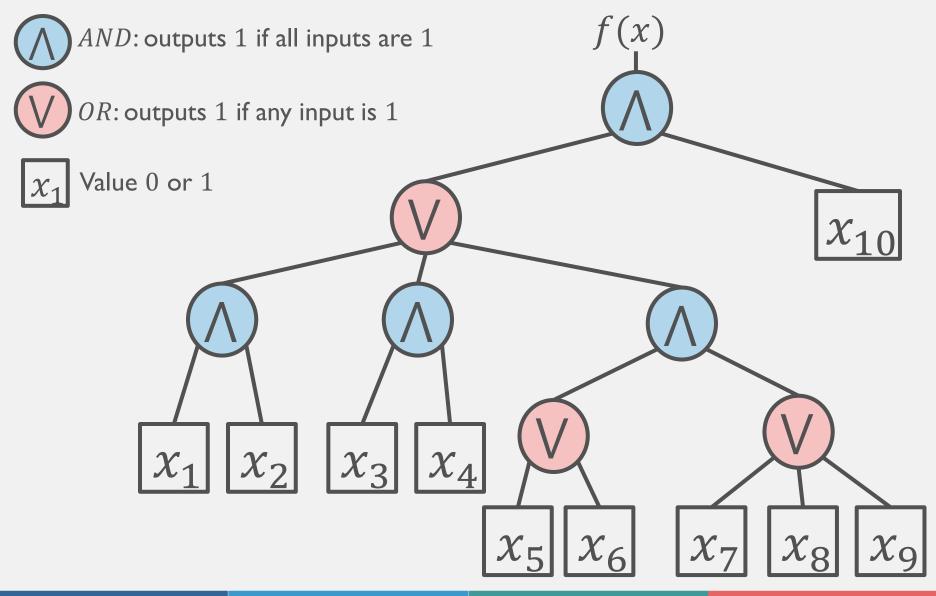


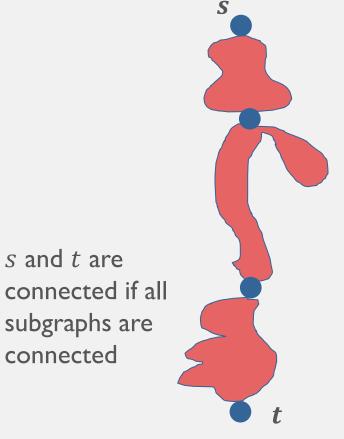
Improved Quantum Algorithm for st-connectivity

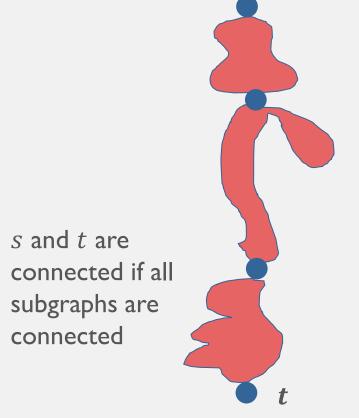
Planar graph[†] st-connectivity algorithm time/queries =

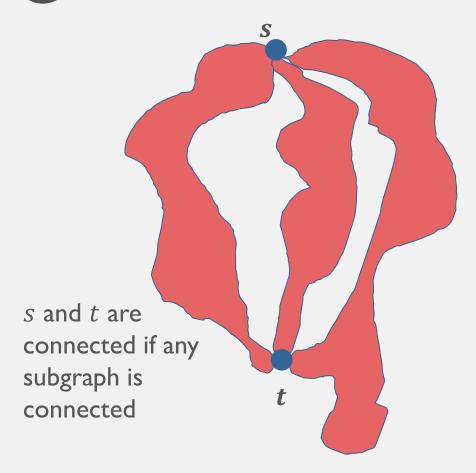
$$\sqrt{\max_{G:connected} R(G)} \sqrt{\max_{G:not\ connected} R(G')}$$

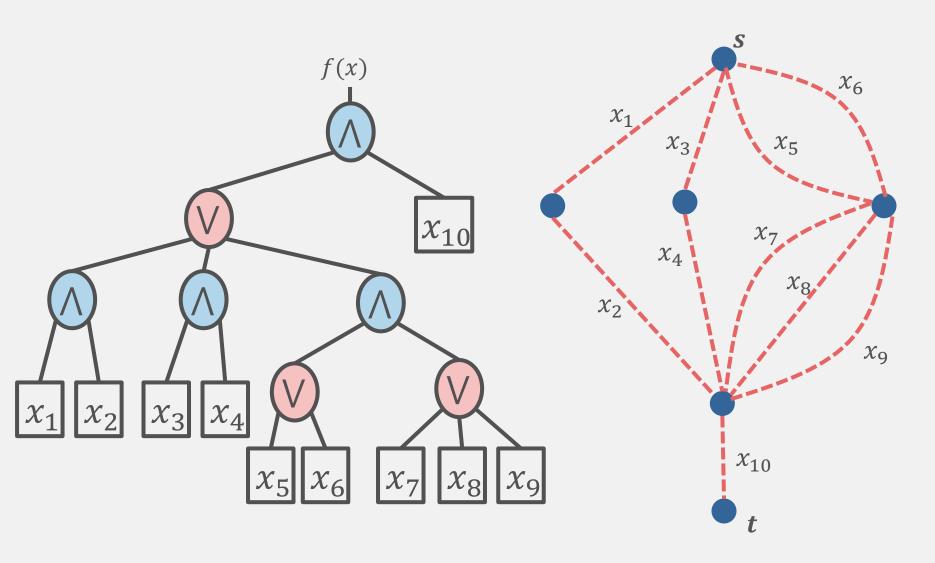
 $[\]dagger$ with s, t on external face

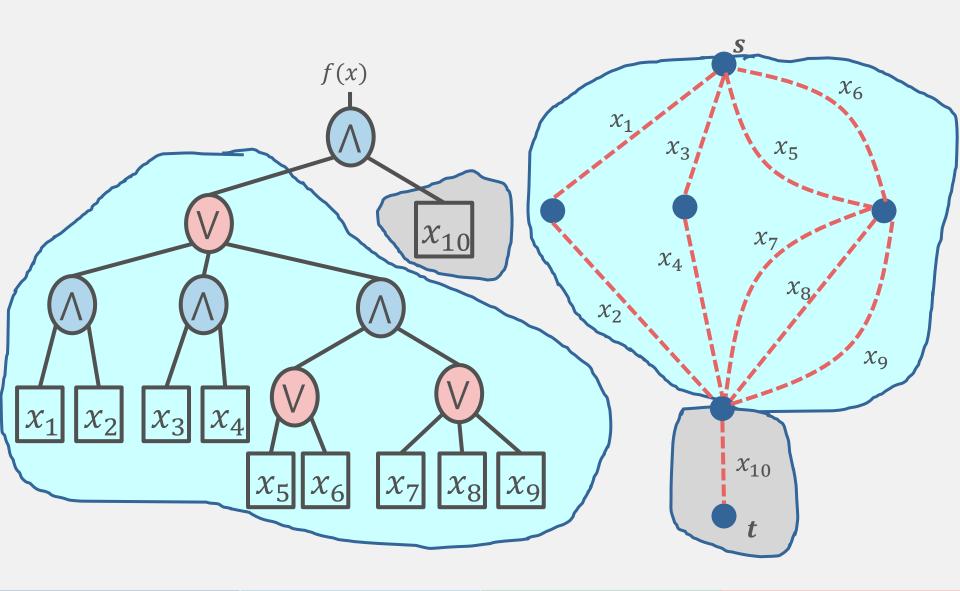


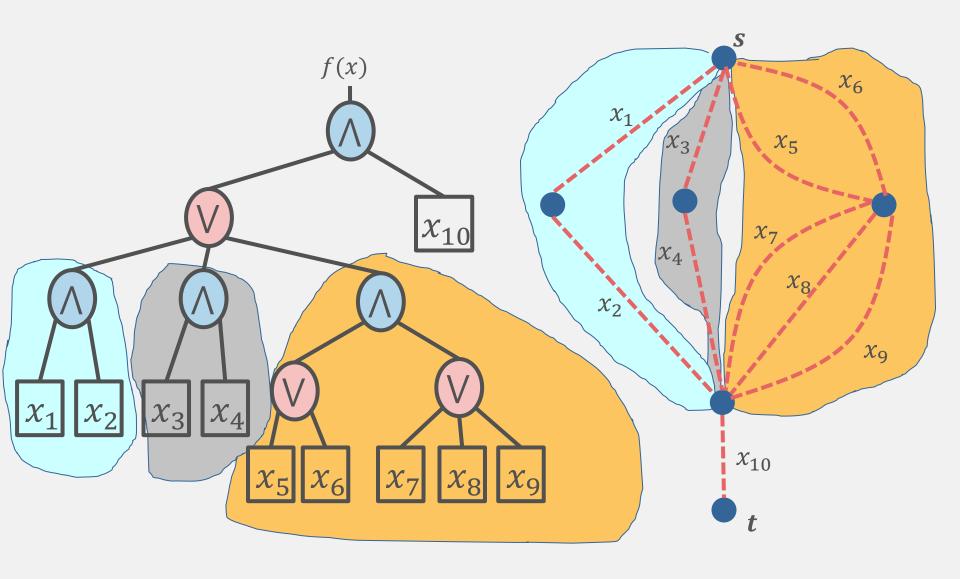


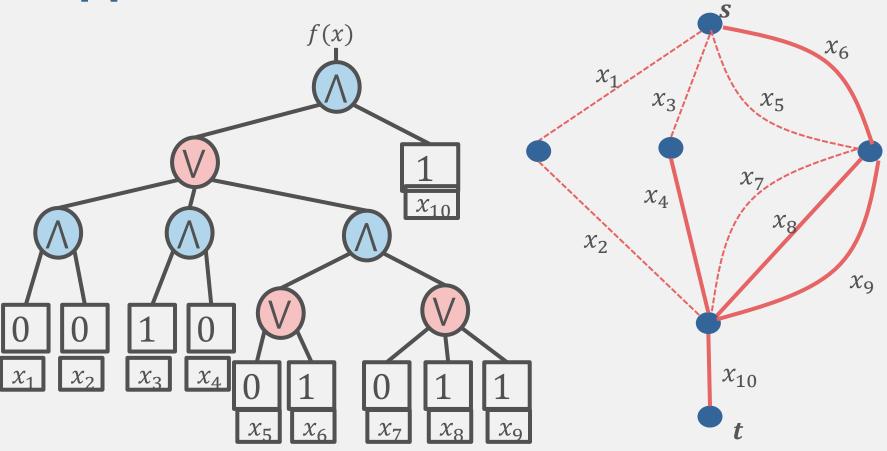












• If we put edges where $x_i = 1$, s and t are connected iff f(x) = 1!

- The graph associated with a formula will always be planar, with s,t on external face.
- Can use our st-connectivity algorithm! Time required depends on the effective resistance of circuit corresponding to corresponding graph.

Open Questions

- When is our algorithm optimal for Boolean formulas?
- Can we extend these ideas to non-planar graphs?
- Are there other problems that reduce to st-connectivity?
- What is the classical time/query complexity of st-connectivity? Can we relate it to effective resistance?