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Similar problems - different complexity?

• Is there a path from 𝑠 to 𝑡?
• What is the path from 𝑠 to 𝑡?

Quantum algorithms (CO 781, Winter 2008)

Prof. Andrew Childs, University of Waterloo

LECTURE 13: Exponential algorithmic speedup by quantum walk

We have seen that the behavior of a quantum walk can be dramatically di↵erent from that of its
classical counterpart. In this lecture we will see an even stronger example of the power of quantum
walk: a query complexity problem that can be solved exponentially faster by a quantum walk than
by any classical algorithm.

The glued trees graph Consider a graph obtained by starting from two balanced binary trees
of height n, and joining them by a cycle of length 2 · 2n that alternates between the leaves of the
two trees. For example, such a graph for n = 4 could look like the following:

Suppose we take a random walk on the graph starting from the root of the left tree. It is not
hard to see that such a walk rapidly gets lost in the middle of the graph, and never has a substantial
probability of reaching the opposite root. In fact, by specifying the graph in such a way that it
can only be explored locally, we can ensure that no classical procedure starting from the left root
can e�ciently reach the right root. However, a quantum walk starting from the left root produces
a state with a large (lower bounded by 1/ poly(n)) overlap on the right root in a short (upper
bounded by poly(n)) amount of time.

Black box graph traversal To establish a provable separation between classical and quantum
strategies, we will formulate the graph traversal problem in terms of query complexity.

Let G = (V,E) be a graph with N vertices. To represent G by a black box, let m be such that
2m � N , and let k be at least as large as the maximum degree of G. For each vertex a 2 V , assign
a distinct m-bit string (called the name of a), not assigning 11 . . . 1 as the name of any vertex. For
each b 2 V with (a, b) 2 E, assign a unique label from {1, 2, . . . , k} to the ordered pair (a, b). For
a 2 {0, 1}m (identifying the vertex with its name) and c 2 {1, 2, . . . , k}, define vc(a) as the name
of the vertex reached by following the outgoing edge of a labeled by c, if such an edge exists. If
there is no vertex of G named a or no outgoing edge from a labeled c, then let vc(a) = 11 . . . 1. The
black box for G takes a 2 {0, 1}m and c 2 {1, 2, . . . , k} as input and returns vc(a).

The black box graph traversal problem is as follows. Let G be a graph and let entrance and
exit be two vertices of G. Given a black box for G as described above, with the additional promise
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Graph w/ effective resistance 𝑅 between 𝑠 and 𝑡:
(𝑅 ≤ length of shortest 𝑠𝑡-path)
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Find a path edge in graph w/ effective resistance 𝑅 b/t 𝑠 and 𝑡:
 Av. Quantum QC: ;𝑂 𝑛 𝑅 	
 Av. Classical QC: Ω(𝑛&) (even for 𝑅 = 𝑂(1))
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Our algorithm will sample bottleneck edge with constant probability 

(when these graphs are expanders)
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;𝑂 𝑛𝐿)*+ )  queries. 

Outperforms existing best quantum alg for 𝐿 = Ω 𝑛
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Under the Hood

Query complexity depends on witness vector 𝑤) (mathematical object used for analysis)

Our algorithm creates a quantum state proportional to 𝑤) 

In the case of path detection, 𝑤) is a linear combination of path-edges, weighted 
according to flow.
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Encodes Boolean 𝑓 on domain 𝑋

Quantum Query 
algorithm to evaluate 
𝑓(𝑥) for any 𝑥 ∈ 𝑋 
(given oracle 𝑂) for 𝑥)

(See Reichardt 2010 arXiv: 1005.1601)Span program

https://arxiv.org/pdf/1005.1601.pdf
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Open Questions

• Other uses of witness vector generation algorithm?
• Use sampling distribution of our algorithm to improve over 

existing path finding algorithm for more complex graphs 
(besides single path)

• Path detection vs Path finding

See also: “Elfs, Trees, and Quantum Walks” Apers + Piddock 
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Average Query Complexity

Average number of oracle uses needed to find an 𝑠𝑡-
path edge of graph 𝐺 w.h.p.

(For complete parent graphs, we find q. query 
complexity is equal to time complexity, up to log 
factors)
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