Quantum Algorithm for Path-Edge Sampling

Stacey Jeffery ${ }^{1}$, Shelby Kimmel ${ }^{2}$, Alvaro Piedrafita ${ }^{1}$

1. CWI Amsterdam
2. Middlebury

Similar problems

- Is there a path from s to t ?
- What is the path from s to t ?

Similar problems

- Is there a path from s to t ?
- What is the path from s to t ?

Similar problems - different complexity?

- Is there a path from s to t ?
- What is the path from s to t ?

['Childs et al., '03]
[Rosmanis, '11]
[Childs, Coudron, Gilani '22]
[Aaronson's top 10, '21]

Path-Edge Sampling

- Is there a path from s to t ?
- What is the path from s to t ?
- Find an edge on a path from s to t

Path-Edge Sampling

- Is there a path from s to t ?
- What is the path from s to t ?
- Find an edge on a path from s to t

Adjacency matrix oracle access to an undirected n vertex graph with effective resistance R

Path-Edge Sampling

- Is there a path from s to t ?
- What is the path from s to t ?
- Find an edge on a path from s to t

Adjacency matrix oracle access to an undirected n vertex graph with effective resistance R

	Path Detection 1	Edge Finding	Path Finding 3
Av. Query Complexity	$\tilde{O}(n \sqrt{R})$		$\tilde{O}\left(n^{3 / 2}\right)$

1: Belovs \& Reichardt, '12, Anderson et al. '23
3: Dürr et al. ‘06

Path-Edge Sampling

- Is there a path from s to t ?
- What is the path from s to t ?
- Find an edge on a path from s to t

Adjacency matrix oracle access to an undirected n vertex graph with effective resistance R

	Path Detection 1	Edge Finding 2	Path Finding 3
Av. Query Complexity	$\tilde{O}(n \sqrt{R})$	$\tilde{O}(n \sqrt{R})$	$\tilde{O}\left(n^{3 / 2}\right)$

1: Belovs \& Reichardt, '12, Anderson et al. '23
2 This paper
3: Dürr et al. ‘06

Path-Edge Sampling

- Is there a path from s to t ?
- What is the path from s to t ?
- Find an edge on a path from s to t

Adjacency matrix oracle access to an undirected n vertex graph with effective resistance R

	Path Detection ${ }^{1}$	Edge Finding	Path Finding ${ }^{3}$
Av. Query Complexity	$\tilde{O}(n \sqrt{R})$	$\tilde{O}(n \sqrt{R})$	$\tilde{O}\left(n^{3 / 2}\right), \tilde{O}\left(n R^{1+o(1)}\right)$

vs \& Reichardt, '12, Anderson et al. '23
paper
et al. '06
:---
from S to t

Problem set-up

Problem set-up

Problem set-up

Goal: find from an edge on a path from s to t
Path: sequence of distinct vertices connected by edges

Problem set-up

Goal: find an edge on a path from s to t

Average Query Complexity

Average number of oracle uses needed to find an stpath edge of graph G w.h.p.

Average Query Complexity

Graph w/ effective resistance R between s and t :

Average Query Complexity

Graph w/ effective resistance R between s and t :
($R \leq$ length of shortest $s t$-path)

Average Query Complexity

Find a path edge in graph $\mathrm{w} /$ effective resistance $R \mathrm{~b} / \mathrm{t} s$ and t : Av. Quantum QC: $\widetilde{O}(n \sqrt{R})$

Average Query Complexity

Find a path edge in graph $\mathrm{w} /$ effective resistance $R \mathrm{~b} / \mathrm{t} s$ and t :
Av. Quantum QC: $\widetilde{O}(n \sqrt{R})$
Av. Classical QC: $\quad \Omega\left(n^{2}\right)$ (even for $R=O(1)$)

$\operatorname{Max}(R=O(n)): \tilde{O}\left(n^{3 / 2}\right)$

Path-Edge Sampling

We sample edges with probability proportional to current flow squared (power dissipated at that edge in resistive circuit)

Path-Edge Sampling

We sample edges with probability proportional to current flow squared (power dissipated at that edge in resistive circuit)

Application 1: Bottlenecks

Want to identify bottleneck edge

Application 1: Bottlenecks

Our algorithm will sample bottleneck edge with constant probability

(when these graphs are expanders)

Application 2: Finding a path

Single path:

Application 2: Finding a path

Single path:

Application 2: Finding a path

Single path:

Equal prob. of sampling any edge on path

Application 2: Finding a path

Single path:

Equal prob. of sampling any edge on path

Our algorithm w.h.p. finds one in the middle 9/10ths.

Application 2: Finding a path

Single path:

Now have two subproblems.
Recurse! Divide and Conquer! (Randomized, like quicksort)

Application 2: Finding a path

Single path:

Now have two subproblems.
Recurse! Divide and Conquer! (Randomized, like quicksort) $\widetilde{O}\left(n L^{1+o(1)}\right)$ queries.
Outperforms existing best quantum alg for $L=\Omega\left(n^{\frac{1}{2}-O(1)}\right)$

Under the Hood

Query complexity depends on witness vector w_{x} (mathematical object used for analysis)

Our algorithm creates a quantum state proportional to w_{x}
In the case of path detection, w_{x} is a linear combination of path-edges, weighted according to flow.

Open Questions

- Other uses of witness vector generation algorithm?

Open Questions

- Other uses of witness vector generation algorithm?
- Use sampling distribution of our algorithm to improve over existing path finding algorithm for more complex graphs (besides single path)

Open Questions

- Other uses of witness vector generation algorithm?
- Use sampling distribution of our algorithm to improve over existing path finding algorithm for more complex graphs (besides single path)
- Path detection vs Path finding

See also: "Elfs, Trees, and Quantum Walks" Apers + Piddock

Thank you!

Funding:

Collaborators:

You!

Average Query Complexity

Average number of oracle uses needed to find an stpath edge of graph G w.h.p.
(For complete parent graphs, we find q. query complexity is equal to time complexity, up to log factors)

