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Super-Polynomial Quantum 
Speedups 

Oracle Model 
Goal: Determine the value of  𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) for a 
known function f, with an oracle for x 
 

 

 

 
 
 

Only care about # of  oracle calls (queries) 

𝑅𝑅(𝑓𝑓) 
(randomized bounded 

error query complexity) 
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Super-Polynomial Quantum 
Speedups 

Example of  Super-Polynomial Speedup 
     Hidden Subgroup Problem: 

  
 

Given: Group 𝐺𝐺 
Promised: ∃ 𝐻𝐻 ⊆ 𝐺𝐺 s.t. 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗 ⇔ 𝑖𝑖, 𝑗𝑗 ∈ 𝐺𝐺 in same left 
coset of  𝐻𝐻 
Problem: Determine 𝐻𝐻 

Q 𝑓𝑓 = 𝑂𝑂(log |𝐺𝐺|) 𝑅𝑅 𝑓𝑓 = Ω( 𝐺𝐺 ) 

[Simon ’94, Boneh and Lipton ’95, Hallgren et al ‘03, Etttinger et al ‘04 ….] 
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Boolean Evaluation Trees 

NAND Tree  

 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥𝑛𝑛−1 𝑥𝑥𝑛𝑛 𝑥𝑥5 𝑥𝑥6 

Q(                        ) = 𝑂𝑂(20.5𝑑𝑑) 

𝑅𝑅(                         ) = Ω(20.753𝑑𝑑) 

? 

[Farhi et al ’08] 

[Saks and Widgerson ’86] 

Depth 
𝑑𝑑 



Boolean Evaluation Trees 

 
 
Fact: No super-poly speedups for total Boolean 
 functions [Beals et. al 1998] 

 
For a super-poly speed up in Boolean 
evaluation trees, need a promise on the input  

Q(                        ) = 𝑂𝑂(20.5𝑑𝑑) 

𝑅𝑅(                         ) = Ω(20.753𝑑𝑑) 
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NAND Tree Hidden Structure 

𝑘𝑘 =max # of  faults on any path 
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Input Affects Query Complexity  

 

Our 
Algorithm: 

NAND Tree Hidden Structure 

 R&S Algorithm 

[Reichardt and Spalek ’08] 



NAND Tree Hidden Structure 

𝑘𝑘 =max # of  faults on any path 
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Q 𝑓𝑓 = 𝑂𝑂(2𝑘𝑘    ) 𝑑𝑑2 
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Classical Lower Bound 
1 

0 0 

1 1 1 1 

Depth 
𝑑𝑑 

𝑅𝑅 𝑓𝑓 = Ω(log𝑑𝑑) 𝑅𝑅 𝑓𝑓 = Ω((log𝑑𝑑)𝑘𝑘) 

× 𝑘𝑘 

𝑑𝑑 

𝑑𝑑 

= log𝑑𝑑 

𝑅𝑅 𝑓𝑓 = Ω(𝑑𝑑log log 𝑑𝑑) 



Super-polynomial Separation 

× log𝑑𝑑 

Q 𝑓𝑓 = 𝑂𝑂(𝑑𝑑3) 𝑅𝑅 𝑓𝑓 = 𝑑𝑑Ω(log log 𝑑𝑑) 

𝑑𝑑
log𝑑𝑑  

 

𝑑𝑑
log𝑑𝑑  

 

𝑘𝑘 =max # of  faults on any path = log𝑑𝑑 

𝑑𝑑 



Extensions 

• Not just NAND Trees 
– Majority Trees 
– Threshold Trees 
– “Direct” Trees 

 
 



Conclusions and Future work 

• We found super-polynomial speed up for 
many Boolean trees 

• Hidden structure based on algorithm, can we 
do the same for other algorithms? 

• Get rid of  scaling with depth in quantum 
algorithm? 

• Simplify classical proof? 
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