
Super-Polynomial Quantum
Speedups

for Boolean Evaluation Trees with
Hidden Structure

Bohua Zhan*, Shelby Kimmel†,
Avinatan Hassidim‡

*Princeton University
†Massachusetts Institue of Technology

‡ Bar Ilan University and Google

Super-Polynomial Quantum
Speedups

Oracle Model
Goal: Determine the value of 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) for a
known function f, with an oracle for x

Only care about # of oracle calls (queries)

𝑅𝑅(𝑓𝑓)
(randomized bounded

error query complexity)

Q(𝑓𝑓)
(quantum bounded error

query complexity)

Classical
Oracle

Quantum
Oracle |𝑏𝑏 + 𝑥𝑥𝑖𝑖⟩

|𝑖𝑖⟩ |𝑖𝑖⟩
|𝑏𝑏⟩

𝑖𝑖 𝑥𝑥𝑖𝑖

Super-Polynomial Quantum
Speedups

Example of Super-Polynomial Speedup
 Hidden Subgroup Problem:

Given: Group 𝐺𝐺
Promised: ∃ 𝐻𝐻 ⊆ 𝐺𝐺 s.t. 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗 ⇔ 𝑖𝑖, 𝑗𝑗 ∈ 𝐺𝐺 in same left
coset of 𝐻𝐻
Problem: Determine 𝐻𝐻

Q 𝑓𝑓 = 𝑂𝑂(log |𝐺𝐺|) 𝑅𝑅 𝑓𝑓 = Ω(𝐺𝐺)

[Simon ’94, Boneh and Lipton ’95, Hallgren et al ‘03, Etttinger et al ‘04 ….]

Super-Polynomial Quantum
Speedups

for Boolean Evaluation Trees with
Hidden Structure

Bohua Zhan*, Shelby Kimmel†,
Avinatan Hassidim‡

*Princeton University
†Massachusetts Institue of Technology

‡ Bar Ilan University and Google

Boolean Evaluation Trees

NAND Tree

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥𝑛𝑛−1 𝑥𝑥𝑛𝑛 𝑥𝑥5 𝑥𝑥6

Q() = 𝑂𝑂(20.5𝑑𝑑)

𝑅𝑅() = Ω(20.753𝑑𝑑)

?

[Farhi et al ’08]

[Saks and Widgerson ’86]

Depth
𝑑𝑑

Boolean Evaluation Trees

Fact: No super-poly speedups for total Boolean
 functions [Beals et. al 1998]

For a super-poly speed up in Boolean
evaluation trees, need a promise on the input

Q() = 𝑂𝑂(20.5𝑑𝑑)

𝑅𝑅() = Ω(20.753𝑑𝑑)

Super-Polynomial Quantum
Speedups

for Boolean Evaluation Trees with
Hidden Structure

Bohua Zhan*, Shelby Kimmel†,
Avinatan Hassidim‡

*Princeton University
†Massachusetts Institue of Technology

‡ Bar Ilan University and Google

NAND Tree Hidden Structure

𝑘𝑘 =max # of faults on any path

1

1

1

1 1

1 1

0

0

0

0 0 0 1 1

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Faults

Depth
𝑑𝑑

Input Affects Query Complexity

Our
Algorithm:

NAND Tree Hidden Structure

 R&S Algorithm

[Reichardt and Spalek ’08]

NAND Tree Hidden Structure

𝑘𝑘 =max # of faults on any path

1

1

1

1 1

1 1

0

0

0

0 0 0 1 1

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Faults

Q 𝑓𝑓 = 𝑂𝑂(2𝑘𝑘) 𝑑𝑑2

Depth
𝑑𝑑

Classical Lower Bound
1

0 0

1 1 1 1

Depth
𝑑𝑑

𝑅𝑅 𝑓𝑓 = Ω(log𝑑𝑑) 𝑅𝑅 𝑓𝑓 = Ω((log𝑑𝑑)𝑘𝑘)

× 𝑘𝑘

𝑑𝑑

𝑑𝑑

= log𝑑𝑑

𝑅𝑅 𝑓𝑓 = Ω(𝑑𝑑log log 𝑑𝑑)

Super-polynomial Separation

× log𝑑𝑑

Q 𝑓𝑓 = 𝑂𝑂(𝑑𝑑3) 𝑅𝑅 𝑓𝑓 = 𝑑𝑑Ω(log log 𝑑𝑑)

𝑑𝑑
log𝑑𝑑

𝑑𝑑
log𝑑𝑑

𝑘𝑘 =max # of faults on any path = log𝑑𝑑

𝑑𝑑

Extensions

• Not just NAND Trees
– Majority Trees
– Threshold Trees
– “Direct” Trees

Conclusions and Future work

• We found super-polynomial speed up for
many Boolean trees

• Hidden structure based on algorithm, can we
do the same for other algorithms?

• Get rid of scaling with depth in quantum
algorithm?

• Simplify classical proof?

	Super-Polynomial Quantum Speedups �for Boolean Evaluation Trees with Hidden Structure
	Super-Polynomial Quantum Speedups
	Super-Polynomial Quantum Speedups
	Super-Polynomial Quantum Speedups �for Boolean Evaluation Trees with Hidden Structure
	Boolean Evaluation Trees
	Boolean Evaluation Trees
	Super-Polynomial Quantum Speedups �for Boolean Evaluation Trees with Hidden Structure
	NAND Tree Hidden Structure
	NAND Tree Hidden Structure
	NAND Tree Hidden Structure
	Classical Lower Bound
	Super-polynomial Separation
	Extensions
	Conclusions and Future work

