Robust Single-Qubit Process Calibration via Robust Phase Estimation

Shelby Kimmel, Guang Hao Low, Ted Yoder

Arxiv: 1502.02677

Imagine...

[Monroe Lab]

Imagine...

[Monroe Lab]

- All gates need to be tuned
- State preparation is off
- Measurements are off

Need to Calibrate Operations

Need to Calibrate Operations

Need to Calibrate Operations

$$A = \pi(1 + \epsilon)$$

is an "Amplitude Error"

Ad hoc Rabi – Ramsey Sequences.

Process Tomography

Process Tomography

- Need perfect state preparation and measurement
- Need perfect additional gates
- Time consuming: need to learn 12 parameters to extract ϕ and ϵ

Randomized Benchmarking

Randomized Benchmarking

- Don't need perfect state preparation and measurement
- Must be able to perform single-qubit Cliffords (although not perfectly)
- Time consuming: need to learn 9 parameters to extract ϕ and ϵ

Randomizeu Benchmarking

Robust Phase Estimation

- Don't need perfect state preparation and measurement
- No additional gates, except Z-rotations
- Learn ϕ and ϵ with optimal efficiency
- Non-adaptive
- Accommodates additional errors like depolarizing noise.

Outline

- Motivation for Robust Phase Estimation
- Robust phase estimation
- Application to Calibration

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}$$
, $\frac{1+\cos k\theta}{2}$

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}$$
, $\frac{1+\cos k\theta}{2}$

For k in \mathbb{Z} , each in time k

$$k = 1$$

Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{\sqrt{T}}$

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}$$
, $\frac{1+\cos k\theta}{2}$

$$k = 1$$

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}$$
, $\frac{1+\cos k\theta}{2}$

$$k = 1$$
 $k = 2$

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}$$
, $\frac{1+\cos k\theta}{2}$

$$k = 1$$
 $k = 2$ $k = 4$

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}, \qquad \frac{1+\cos k\theta}{2}$$

For k in \mathbb{Z} , each in time k

$$k = 1$$
 $k = 2$ $k = 4$ $k = 8$

Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{T}$ Optimal – by information theory.

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}+\delta_{k1}, \qquad \frac{1+\cos k\theta}{2}+\delta_{k2}$$

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin\theta}{2}+\delta_{k1}, \qquad \frac{1+\cos\theta}{2}+\delta_{k2}$$

Using only k=1 can't get an accurate estimate!

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}+\delta_{k1}, \qquad \frac{1+\cos k\theta}{2}+$$

$$k = 1$$

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}+\delta_{k1}, \qquad \frac{1+\cos k\theta}{2}+$$

$$k = 1$$
 $k = 2$

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}+\delta_{k1}, \qquad \frac{1+\cos k\theta}{2}+\delta_{k2}$$

For k in \mathbb{Z} , each in time k

$$k = 1 \qquad k = 2 \qquad k = 4$$

Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{T}$, as long as $|\delta_k| < .35$ for all k.

Want 2-outcome experiments with probabilities like:

$$1+\cos k\theta \over 2+\delta_{k1}, \qquad \frac{1+\cos k\theta}{2}+\delta_{k2}$$

Want 2-outcome experiments with probabilities:

$$\oint_{x} \left| \left\langle 0 \middle| \widetilde{U}^{k} \middle| 0 \right\rangle \right|^{2} = \frac{1 + \cos kA}{2} + \sin^{2} \frac{kA}{2} \sin^{2} \phi$$

$$\left|\left\langle 0\left|\widetilde{U}^{k}\right| \rightarrow \right\rangle\right|^{2} = \frac{1+\sin kA}{2} - \sin kA \sin^{2}\frac{\phi}{2}$$

 $A = \pi(1 + \epsilon)$ is total amplitude of rotation

Want 2-outcome experiments with probabilities:

 $A = \pi(1 + \epsilon)$ is total amplitude of rotation

Want 2-outcome experiments with probabilities:

Don't have perfect state prep and measurement? OK! Just add to δ error.

Want 2-outcome experiments with probabilities:

Have depolarizing errors? OK! Just add to δ errors.

Want 2-outcome experiments with probabilities:

Heisenberg limited! Estimate of ϵ with standard deviation $\sigma(\epsilon) \sim \frac{1}{N}$, where N is the number of times \widetilde{U} is applied.

Want 2-outcome experiments with probabilities:

Heisenberg limited! Estimate of ϕ with standard deviation $\sigma(\phi) \sim \frac{1}{N}$, where N is the number of times \widetilde{U} is applied.

Recap:

Robust Phase Estimation

- Don't need perfect state preparation and measurement
- No additional gates, except Z-rotations
- Learn ϕ and ϵ with optimal efficiency
- Non-adaptive
- Accommodates additional errors like depolarizing noise.

Open Questions

- Multi-Qubit Operations?
- No perfect Z-rotation?
- Connection to Randomized Benchmarking

Think this might be useful?

[Monroe Lab]

Arxiv: 1502.02677