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« All gates have errors Robust Want to quickly

e State preparation has B Phase »determine gate errors,

errors Estimation @ 2and then tune to fix.
* Measurements has errors
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Control Errors

9 . .
Amplitude of Rotation:

A=mn(l+¢€)

X

—
Axis of Rotation:

cos(¢p)X + sin(¢)2

Unitary U



Control Errors

z
—
Amplitude of Rotation:
A=mn(l+¢€)
€ is an “Amplitude
Error”
X
—
Axis of Rotation:
cos(¢)|x) +
Unitary U ¢ is an “Off-

Resonance Error”
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Comparison to Existing Techniques

Ad hoc Rabi — Ramsey
Sequences.

Gate Control
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Comparison to Existing Techniques
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Gate Control

Process Tomography

Need perfect state preparation and
measurement

Need perfect additional gates
Time consuming: need to learn 12
parameters to extract ¢ and €
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Comparison to Existing Techniques
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Gate Control

Randomized Benchmarking

 Don’t need perfect state preparation and
measurement

* Must be able to perform single-qubit
Cliffords (although not perfectly)

 Time consuming: need to learn 9
parameters to extract ¢ and €
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Gate Set Tomography

[Blume-Kohout et al “13]



Comparison to Existing Techniques

Gate Control

Gate Set Tomography

[Blume-Kohout et al “13]

* Don’t need to assume anything about
state preparation, measurements or
other gates

e Extremely Inefficient: need to learn ~25
parameters to extract ¢ and €
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Comparison to Existing Techniques

Gate Control

Robust Phase Estimation

Don’t need perfect state preparation and
measurement

No additional gates™

Learn ¢ and € with optimal efficiency
Non-adaptive

Accommodates additional errors like
depolarizing noise.
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Can sample from 2 binomial random

0 variables with probability of “heads”
1+ sin k6 1+ cos k6
0 2 2

For k in Z, each in time k



Phase Estimation [Higgins et al. ‘09]

Can sample from 2 binomial random

0 variables with probability of “heads”
1+ sin k6 1+ cos k6
0 2 2

For k in Z, each in time k

k=1

1

Can estimate 6 with standard deviation o(6) ~ 7
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Phase Estimation [Higgins et al. ‘09]

Can sample from 2 binomial random
variables with probability of “heads”

1 + sin k6 1+ cos k@
2 ’ 2

For k in Z, each in time k

0

k=1 k=2 k=4 k=8

1

Can estimate @ with standard deviation o(8) ~ p

Optimal — by information theory.
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Robust Phase Estimation

Can sample from 2 binomial random

0 variables with probability of “heads”
14 sin6 14 cosf
+ Ok, + Ok
0 2 2

Using only k = 1 can’t get an
accurate estimate!
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Robust Phase Estimation

Can sample from 2 binomial random
variables with probability of “heads”

1 + sin k6 1+ cos kB

2
For k in Z, each in time k

0

k=1 k=2 k=4
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Can estimate 8 with standard deviation o(6) ~ =,

T
1 .35 for all k.

as long as |0} | < 75



Robust Phase Estimation

Can sample from 2 binomial random
variables with probability of “heads”

1 + sin k6 1+ cos kB
> + 01, + 0y

2
For k in Z, each in time k

0

k=1 k=2 k=4

. . L. 1
Can estimate 8 with standard deviation o(6) ~ =,

T
1
N .35 for all k.

...but need upper bound on size of 6 to know how
many extra samples to take.

as long as |0 | <



Proof Sketch

/2

3m/2

Binomial variable variance: np(1 — p)

Variance small whenp = 0,1

When k6~ {0,%, 7,22},

1+sin k6@ 1+cos k6
or

x equals1orO

Even with § errors, “heads” probability
still closeto1orO



Proof Sketch

Binomial variable variance: np(1 — p)

3m/4 /4
Variance largest whenp =~ 1/2
When k9~{z,3n,5n,7n},
4’ 4’ 4’ 4
1+sin k6@  1+cos k6 equal 1 1
Sm/4 7mt/8 27 2 2 \/§

If & erroris > \/__’ can trick you into
excluding the wrong half.
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Robust Phase Estimation for Gate

Estimation
Want 2-outcome experiments with probabilities:
_ 1+ sin k6 1+ coskf
U i € 2 + 5k1) 2 + 5](2
~ i + cos kA\/ kA N
¢ |(O|Uk|0)|2 = + sin? —sin? ¢
X 2 2
~ 1+ sinkA
(0| T*| —>)|2 =+ — sin kA sin? —

2 A '2/

A=n(l+e)is Size less < ¢p?

total amplitude of
rotation Don’t need to know details!



Robust Phase Estimation for Gate

Estimation
Want 2-outcome experiments with probabilities:
_ 1+ sin k6 1+ coskf
U i € 2 + 5k1) 2 + 5](2
~ i + cos kA\/ kA N
¢ |(O|Uk|0)|2 = > + sin27sin2qb
~ 1+ sinkA
(0| T*| —>)|2 =+ — sin kA sin? —
2 Al 2

1

Heisenberg limited! Estimate of € with standard deviation g(€) ~ Y

where N is the number of times U is applied.



Robust Phase Estimation for Gate
Estimation

7 i Want 2-outcome experiments with probabilities:
€ 1+ sin k6 1+ cos k6

7 " 5 + Ok1, 5 + Oy»

1+ cosm ke
2

_ 1 ' k
(0| (Z_r /202 UZ_r2)| )| = i Slgme ¢ + 0(€?)

(0|(Z_r /202,02 _r ;)% [0)]” = + 0(€?)

1

Heisenberg limited! Estimate of ¢ with standard deviation g(¢) ~ o

where N is the number of times U is applied.
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Additional Errors

Leek&—ﬁke—need—pepﬁeet—H@@Hﬁ

All of the following errors simply contribute to 6 errors
* Imperfect state preparation

* Imperfect measurement

* Additional errors like depolarizing errors

* Imperfect Z rotation



Example: State Preparation Errors Add
to 0 errors

Want: [(0|T%| -)|°

Suppose can only prepare |0), measure |0).
No perfect X-rotation, so can’t prepare | ).
Instead prepare p’_,



Example: State Preparation Errors Add
to 0 errors

Want: [(0|T%| -)|°

Suppose can only prepare |0), measure |0).
No perfect X-rotation, so can’t prepare | ).
Instead prepare p’_,

Trace Distance: D(p, 0) = maximum difference in probability
between any two experiments on states p, g.

Thus if use p'_, instead of |—), & error changes by at most
D(p's, |=K~1)



Example: State Preparation Errors Add
to 0 errors

Want experiment with outcome probability:
(0[] =)= r (MyT<(p.))
Have experiment with outcome probability:
tr (Moﬂk(l)'e))
r (Mo T (p') )= tr (MoT* (p-)) — tr(MeT (o', — p-)

|

Have Want < D(ps, p'2)



Example: Depolarizing Errors

Alp) =yp+ (1 —y)l/2

1+ sin k6 1 ” sink@
5 + 01 — > a4 5 + Op1
sink@
01 — (1 — Vk) 5 + YK 84

Depolarizing Errors Cause 9§ errors to increase with increasing k
— eventually will overwhelm .35 bound.

Robust phase estimation will give most accurate estimate possible,
up to the k where passes .35 bound. (No longer efficient).



Additional Errors
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All of the following errors simply contribute to 6 errors
* Imperfect state preparation

* Imperfect measurement

* Additional errors like depolarizing errors

* Imperfect Z rotation

Can incorporate any error, as long as can bound how

much that error will shift your outcome probability
(and total shift is less than .35)




Bounding d Errors

Need upper bounds on

 Sizeof @, €

* Trace distance between ideal and true state preparation
* “Trace distance” between ideal and true measurement

We provide simple (length-0/1) sequences to upper
bound these quantities.



Sample Procedure

1. Bound 9 errors

2. Choose # of samples to take each round based on size of
errors and desired precision

Robust phase estimation on €.

Robust phase estimation on ¢.

5. Use controls to correct errors, repeat.

W



Sample Procedure

1. Bound 6 errors

2. Choose # of samples to take each round based on size of
errors and desired precision

. Robust phase estimation on €.

Robust phase estimation on 6.

5. Use controls to correct errors

W

] .- "
1 ' 11 i it
U R m,'{u
N Y ¥ !



Recap:

~

P4
U A_€

Robust Phase Estimation

Don’t need perfect state preparation and
measurement

No additional gates™

Learn ¢ and € with optimal efficiency
Non-adaptive

Accommodates additional errors like
depolarizing noise.

Open Questions

Multi-Qubit Operations?

Connection to Randomized Benchmarking?
Connection to Gate Set Tomography?
What if figure of merit is number of
experiments?



Think this might be useful?

Arxiv: 1502.02677



Sample Procedure

1. Bound 9 errors

2. Choose # of samples to take each round based on size of
errors and desired precision

. Robust phase estimation on €.

Robust phase estimation on 6.

5. Use controls to correct errors, repeat.

~ W

If bad 6 bounds, €, 8 estimates accurate, just not as precise.



Sample Procedure

1. Bound 9 errors

2. Choose # of samples to take each round based on size of
errors and desired precision

3. Robust phase estimation on €.

4. Robust phase estimation on 6.

5. Use controls to correct errors, repeat.

If bad 6 bounds, €, 8 estimates accurate, just not as precise.

e.g. Controls have 5 digits of precision. Estimate €, 8 to 5 digits of
precision, but after correcting still inaccurate at 3 digits of
precision. d errors could be cause.
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« All gates are off Want to quickly determine

* State preparation is off ‘ imperfections in gate
e Measurements are off controls and then tune to fix.
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Robust Phase Estimation for Gate

Estimation
Want 2-outcome experiments with probabilities:
_ 1+ sin k6 1+ coskf
U i € 2 + 5k1) 2 + 5](2
~ i + cos kA kA N
¢ |(O|Uk|0)|2 = sin® —sin® ¢
y 2 2
- 1+sink

_ . L
olTk| =)|° - — sin kA sin? —

Don’t have perfect state prep and
measurement? OK! Just add to § error.



Robust Phase Estimation for Gate

Want 2-outcome experiments with probabilities:

Estimation
1+ sin k@
U i € 2 +5k1'
6 |(olg¥o)* =
~ 2
[{0|T%| =)|" -

1+ cos k6
+ Oy»
2
i + cos kA . kA N
> sin 751n )

_1+sink

. L
+ — sin kA sin® —
2 A 2 )

Have depolarizing errors? OK! Just add to 6

errors.



Robust Phase Estimation for Gate

Estimation
Want 2-outcome experiments with probabilities:
_ 1+ sin k6 1+ coskf
U i € 2 + 5k1) 2 + 5](2
~ i + cos kA\/ kA N
¢ |(O|Uk|0)|2 = > + sin27sin2qb
~ 1+ sinkA
(0| T*| —>)|2 =+ — sin kA sin? —
2 Al 2

1

Heisenberg limited! Estimate of € with standard deviation g(€) ~ Y

where N is the number of times U is applied.



