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Want to quickly 
determine gate errors, 
and then tune to fix.
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Robust 
Phase 

Estimation

• All gates have errors
• State preparation has 

errors
• Measurements has errors
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Control Errors

Axis of Rotation:  𝑥

Amplitude of Rotation: 𝜋

Ideal Unitary 𝑈



Control Errors

Amplitude of Rotation: 
𝐴 = 𝜋(1 + 𝜖)

Axis of Rotation: 
cos 𝜙  𝑥 + sin 𝜙  𝑧

Unitary  𝑈



Control Errors

Amplitude of Rotation: 
𝐴 = 𝜋(1 + 𝜖)

𝝓 is an “Off-
Resonance Error”

𝝐 is an “Amplitude 
Error”

Axis of Rotation: 
cos 𝜙   𝑥 +

Unitary  𝑈



Outline

1. Motivation for Robust Phase Estimation

2. Control Errors for Single Qubit Gates

3. Comparison to Existing Methods

4. Robust Phase Estimation

5. Application to Parameter Estimation



Comparison to Existing Techniques

Ad hoc Rabi – Ramsey 
Sequences.
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Comparison to Existing Techniques

Process Tomography

• Need perfect state preparation and 
measurement

• Need perfect additional gates
• Time consuming: need to learn 12 

parameters to extract 𝜙 and ϵ

Gate ControlGate Control

𝝐
𝝓



Comparison to Existing Techniques

Process Tomography

Randomized Benchmarking 
Tomography

Gate ControlGate Control

𝝐
𝝓



Comparison to Existing Techniques

Process Tomography

Randomized Benchmarking

• Don’t need perfect state preparation and 
measurement 

• Must be able to perform single-qubit
Cliffords (although not perfectly)

• Time consuming: need to learn 9 
parameters to extract 𝜙 and 𝜖
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Comparison to Existing Techniques

Process Tomography

Randomized Benchmarking

Gate Set Tomography
[Blume-Kohout et al ‘13]

Gate ControlGate Control

𝝐
𝝓

• Don’t need to assume anything about 
state preparation, measurements or 
other gates

• Extremely Inefficient: need to learn ~25 
parameters to extract 𝜙 and 𝜖
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Comparison to Existing Techniques

Process Tomography

Randomized Benchmarking

GST

Gate ControlGate Control

𝝐
𝝓

Robust Phase Estimation

• Don’t need perfect state preparation and 
measurement 

• No additional gates*
• Learn 𝜙 and 𝜖 with optimal efficiency
• Non-adaptive
• Accommodates additional errors like 

depolarizing noise.
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Phase Estimation [Higgins et al. ‘09]

𝜃

0

𝑘 = 8

Can estimate 𝜃 with standard deviation 𝜎 𝜃 ∼
1

𝑇

Optimal – by information theory.

𝑘 = 2

1 + sin 𝑘𝜃

2
,

1 + cos 𝑘𝜃

2

For 𝑘 in ℤ, each in time 𝑘

𝑘 = 1 𝑘 = 4

Can sample from 2 binomial random 
variables with probability of “heads”



Robust Phase Estimation

𝜃
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Robust Phase Estimation

𝜃
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Using only 𝑘 = 1 can’t get an 
accurate estimate!
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variables with probability of “heads”
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Robust Phase Estimation

𝜃

0

Can estimate 𝜃 with standard deviation 𝜎 𝜃 ∼
1

𝑇
,

as long as  𝛿𝑘 <
1

8
≈ .35 for all 𝑘.
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Robust Phase Estimation

𝜃

0

1 + sin 𝑘𝜃

2
+ 𝛿𝑘1,

1 + cos 𝑘𝜃

2
+ 𝛿𝑘2

For 𝑘 in ℤ, each in time 𝑘

𝑘 = 2𝑘 = 1 𝑘 = 4

Can sample from 2 binomial random 
variables with probability of “heads”

…but need upper bound on size of 𝛿 to know how 
many extra samples to take. 

Can estimate 𝜃 with standard deviation 𝜎 𝜃 ∼
1

𝑇
,

as long as  𝛿𝑘 <
1

8
≈ .35 for all 𝑘.



Proof Sketch

𝜋 0

𝜋/2

3𝜋/2

Binomial variable variance: 𝑛𝑝(1 − 𝑝)

Variance small when 𝑝 = 0,1

When 𝑘𝜃~ 0,
𝜋

2
, 𝜋,

3𝜋

2
,

1+sin 𝑘𝜃

2
or   

1+cos 𝑘𝜃

2
equals 1 or 0

Even with 𝛿 errors, “heads” probability 
still close to 1 or 0



Proof Sketch

5𝜋/4

𝜋/43𝜋/4

7𝜋/8

Binomial variable variance: 𝑛𝑝(1 − 𝑝)

Variance largest when 𝑝 ≈ 1/2

When 𝑘𝜃~
𝜋

4
,
3𝜋

4
,
5𝜋

4
,
7𝜋

4
,

1+sin 𝑘𝜃

2
,   

1+cos 𝑘𝜃

2
equals  

1

2
±

1

8

If 𝛿 error is >
1

8
, can trick you into 

excluding the wrong half.
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1 + sin 𝑘𝜃

2
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1 + cos 𝑘𝜃

2
+ 𝛿𝑘2

Want 2-outcome experiments with probabilities like:
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Robust Phase Estimation for Gate 
Estimation

0  𝑈𝑘 0
2
=
1 + cos 𝑘𝐴

2
+ sin2

𝑘𝐴

2
sin2𝜙

0  𝑈𝑘 →
2
=
1 + sin 𝑘𝐴

2
− sin 𝑘𝐴 sin2

𝜙

2

1 + sin 𝑘𝜃

2
+ 𝛿𝑘1,

1 + cos 𝑘𝜃

2
+ 𝛿𝑘2

Want 2-outcome experiments with probabilities:

𝐴 = 𝜋(1 + 𝜖) is 
total amplitude of 
rotation

 𝑈



𝝐

𝜙

Size less < 𝜙2

Robust Phase Estimation for Gate 
Estimation

0  𝑈𝑘 0
2
=
1 + cos 𝑘𝐴

2
+ sin2

𝑘𝐴

2
sin2𝜙

0  𝑈𝑘 →
2
=
1 + sin 𝑘𝐴

2
− sin 𝑘𝐴 sin2

𝜙

2

1 + sin 𝑘𝜃

2
+ 𝛿𝑘1,

1 + cos 𝑘𝜃

2
+ 𝛿𝑘2

Want 2-outcome experiments with probabilities:

 𝑈

𝐴 = 𝜋(1 + 𝜖) is 
total amplitude of 
rotation Don’t need to know details!
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Robust Phase Estimation for Gate 
Estimation

0  𝑈𝑘 0
2
=
1 + cos 𝑘𝐴

2
+ sin2

𝑘𝐴

2
sin2𝜙

0  𝑈𝑘 →
2
=
1 + sin 𝑘𝐴

2
− sin 𝑘𝐴 sin2

𝜙

2

1 + sin 𝑘𝜃

2
+ 𝛿𝑘1,

1 + cos 𝑘𝜃

2
+ 𝛿𝑘2

Want 2-outcome experiments with probabilities:

Heisenberg limited! Estimate of 𝜖 with standard deviation 𝜎 𝜖 ∼
1

𝑁
, 

where 𝑁 is the number of times  𝑈 is applied. 

 𝑈



𝝐

𝜙

Robust Phase Estimation for Gate 
Estimation

0 (𝑍−𝜋/2 𝑈𝑍𝜋  𝑈𝑍−𝜋/2)
𝑘 0

2
=
1 + cos𝑚𝜖𝑘𝜙

2
+ 𝑂(𝜖2)

0 (𝑍−𝜋/2 𝑈𝑍𝜋  𝑈𝑍−𝜋/2)
𝑘 →

2
=
1 + sin𝑚𝜖𝑘𝜙

2
+ 𝑂(𝜖2)

1 + sin 𝑘𝜃

2
+ 𝛿𝑘1,

1 + cos 𝑘𝜃

2
+ 𝛿𝑘2

Want 2-outcome experiments with probabilities: 𝑈

Heisenberg limited! Estimate of 𝜙 with standard deviation 𝜎 𝜙 ∼
1

𝑁
, 

where 𝑁 is the number of times  𝑈 is applied. 
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Additional Errors

Looks like need perfect 0  𝑈𝑘 →
2

All of the following errors simply contribute to 𝛿 errors
• Imperfect state preparation
• Imperfect measurement
• Additional errors like depolarizing errors 
• Imperfect Z rotation
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to 𝛿 errors

Want: 0  𝑈𝑘 →
2

Suppose can only prepare 0 , measure 0 . 
No perfect X-rotation, so can’t prepare |→ .
Instead prepare 𝜌′→



Example: State Preparation Errors Add 
to 𝛿 errors

Want: 0  𝑈𝑘 →
2

Suppose can only prepare 0 , measure 0 . 
No perfect X-rotation, so can’t prepare |→ .
Instead prepare 𝜌′→

Trace Distance: D(𝜌, 𝜎) = maximum difference in probability 
between any two experiments on states 𝜌, 𝜎.

Thus if use 𝜌′→ instead of |→ , 𝛿 error changes by at most 
D(𝜌′→, |→ ⟨→|) 



Example: State Preparation Errors Add 
to 𝛿 errors

Want experiment with outcome probability: 

0  𝑈𝑘 →
2

= tr 𝑀0
 𝒰𝑘 𝜌→

Have experiment with outcome probability:

tr 𝑀0
 𝒰𝑘 𝜌′→

tr 𝑀0
 𝒰𝑘 𝜌′→ = tr 𝑀0

 𝒰𝑘 𝜌→ − tr 𝑀0
 𝒰𝑘(𝜌′→ − 𝜌→)

< D(𝜌→, 𝜌′→) Have Want



Example: Depolarizing Errors

Λ 𝜌 = 𝛾𝜌 + 1 − 𝛾 𝕀/2

1 + sin 𝑘𝜃

2
+ 𝛿𝑘1 →

1

2
+ 𝛾𝑘

sin𝑘𝜃

2
+ 𝛿𝑘1

𝛿𝑘1 → 1 − 𝛾𝑘
sin𝑘𝜃

2
+ 𝛾𝑘𝛿𝑘1

Depolarizing Errors Cause 𝛿 errors to increase with increasing k
→ eventually will overwhelm .35 bound.

Robust phase estimation will give most accurate estimate possible, 
up to the 𝑘 where passes .35 bound. (No longer efficient).



Additional Errors

Looks like need perfect 0  𝑈𝑘 →
2

All of the following errors simply contribute to 𝛿 errors
• Imperfect state preparation
• Imperfect measurement
• Additional errors like depolarizing errors 
• Imperfect Z rotation

Can incorporate any error, as long as can bound how 
much that error will shift your outcome probability
(and total shift is less than .35)



Bounding 𝛿 Errors

Need upper bounds on 
• Size of 𝜙, 𝜖
• Trace distance between ideal and true state preparation
• “Trace distance” between ideal and true measurement

We provide simple (length-0/1) sequences to upper 
bound these quantities.



Sample Procedure

1. Bound 𝛿 errors
2. Choose # of samples to take each round based on size of 𝛿

errors and desired precision
3. Robust phase estimation on 𝜖.
4. Robust phase estimation on 𝜙.
5. Use controls to correct errors, repeat.



Sample Procedure

1. Bound 𝛿 errors
2. Choose # of samples to take each round based on size of 𝛿

errors and desired precision
3. Robust phase estimation on 𝜖.
4. Robust phase estimation on 𝜃.
5. Use controls to correct errors, repeat.

[BBN]



𝝐

𝜙

Recap:
Robust Phase Estimation

• Don’t need perfect state preparation and 
measurement 

• No additional gates*
• Learn 𝜙 and 𝜖 with optimal efficiency
• Non-adaptive
• Accommodates additional errors like 

depolarizing noise.

 𝑈

Open Questions
• Multi-Qubit Operations?
• Connection to Randomized Benchmarking?
• Connection to Gate Set Tomography?
• What if figure of merit is number of 

experiments?



Think this might be useful?

Arxiv: 1502.02677
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Sample Procedure

1. Bound 𝛿 errors
2. Choose # of samples to take each round based on size of 𝛿

errors and desired precision
3. Robust phase estimation on 𝜖.
4. Robust phase estimation on 𝜃.
5. Use controls to correct errors, repeat.

If bad 𝛿 bounds, 𝜖, 𝜃 estimates accurate, just not as precise. 



Sample Procedure

1. Bound 𝛿 errors
2. Choose # of samples to take each round based on size of 𝛿

errors and desired precision
3. Robust phase estimation on 𝜖.
4. Robust phase estimation on 𝜃.
5. Use controls to correct errors, repeat.

If bad 𝛿 bounds, 𝜖, 𝜃 estimates accurate, just not as precise. 

e.g. Controls have 5 digits of precision. Estimate 𝜖, 𝜃 to 5 digits of 
precision, but after correcting still inaccurate at 3 digits of 
precision. 𝛿 errors could be cause.
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Imagine…

• All gates are off
• State preparation is off
• Measurements are off

Want to quickly determine 
imperfections in gate 
controls and then tune to fix.

171Yb+

2 mm

[Monroe Lab]



Proof Sketch
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𝜙

Robust Phase Estimation for Gate 
Estimation

0  𝑈𝑘 0
2
=
1 + cos 𝑘𝐴

2
+ sin2

𝑘𝐴

2
sin2𝜙

0  𝑈𝑘 →
2
=
1 + sin 𝑘𝐴

2
− sin 𝑘𝐴 sin2

𝜙

2

1 + sin 𝑘𝜃

2
+ 𝛿𝑘1,

1 + cos 𝑘𝜃

2
+ 𝛿𝑘2

Want 2-outcome experiments with probabilities:

Don’t have perfect state prep and 
measurement? OK! Just add to 𝛿 error.

 𝑈
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𝜙

Robust Phase Estimation for Gate 
Estimation

0  𝑈𝑘 0
2
=
1 + cos 𝑘𝐴

2
+ sin2

𝑘𝐴

2
sin2𝜙

0  𝑈𝑘 →
2
=
1 + sin 𝑘𝐴

2
− sin 𝑘𝐴 sin2

𝜙

2

1 + sin 𝑘𝜃

2
+ 𝛿𝑘1,

1 + cos 𝑘𝜃

2
+ 𝛿𝑘2

Want 2-outcome experiments with probabilities:

Have depolarizing errors? OK! Just add to 𝛿
errors.

 𝑈
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𝜙

Robust Phase Estimation for Gate 
Estimation

0  𝑈𝑘 0
2
=
1 + cos 𝑘𝐴

2
+ sin2

𝑘𝐴

2
sin2𝜙

0  𝑈𝑘 →
2
=
1 + sin 𝑘𝐴

2
− sin 𝑘𝐴 sin2

𝜙

2

1 + sin 𝑘𝜃

2
+ 𝛿𝑘1,

1 + cos 𝑘𝜃

2
+ 𝛿𝑘2

Want 2-outcome experiments with probabilities:

Heisenberg limited! Estimate of 𝜖 with standard deviation 𝜎 𝜖 ∼
1

𝑁
, 

where 𝑁 is the number of times  𝑈 is applied. 

 𝑈


