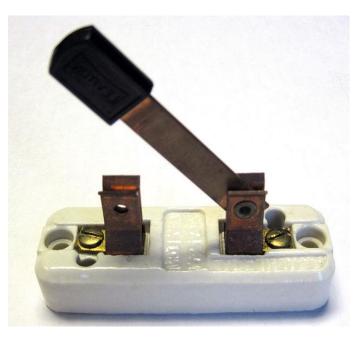
Robust Single-Qubit Process Calibration via Robust Phase Estimation

Shelby Kimmel, Guang Hao Low, Ted Yoder

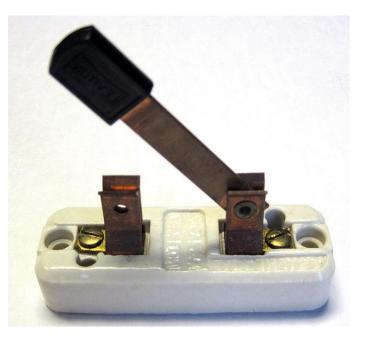
Arxiv: 1502.02677

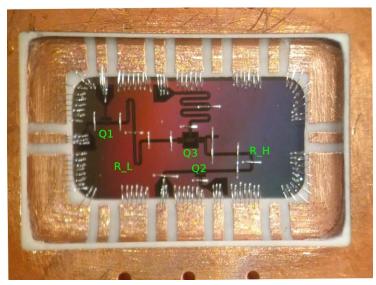
JOINT CENTER FOR QUANTUM INFORMATION AND COMPUTER SCIENCE

Imagine...



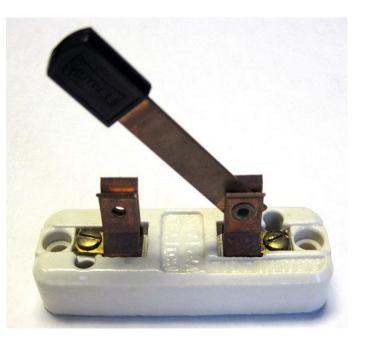
Imagine...

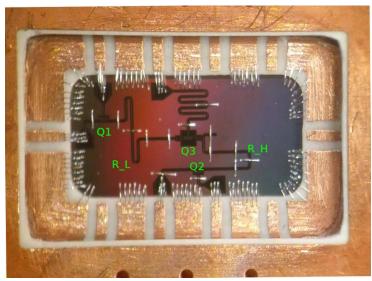




[BBN]

Imagine...

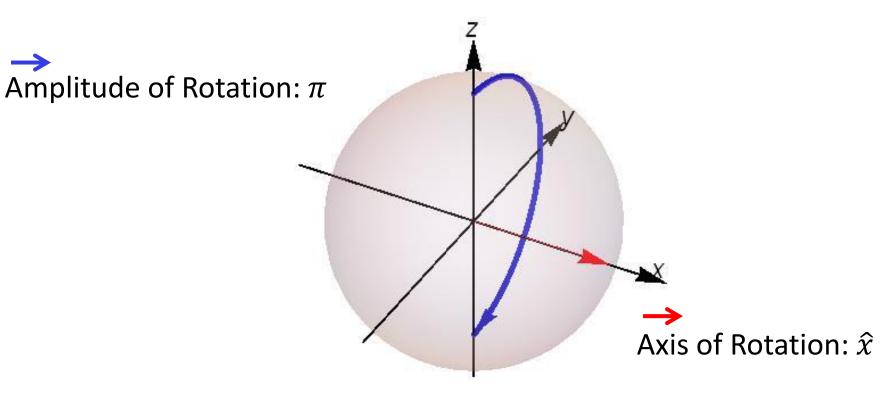




- All gates need to be tuned
- State preparation is off
- Measurements are off

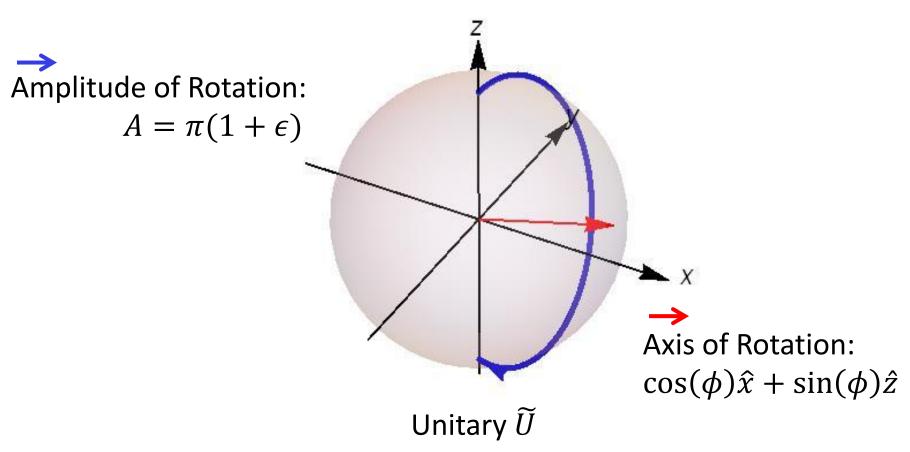
Want to quickly determine imperfections in gate controls and then tune to fix.

Need to Calibrate Operations

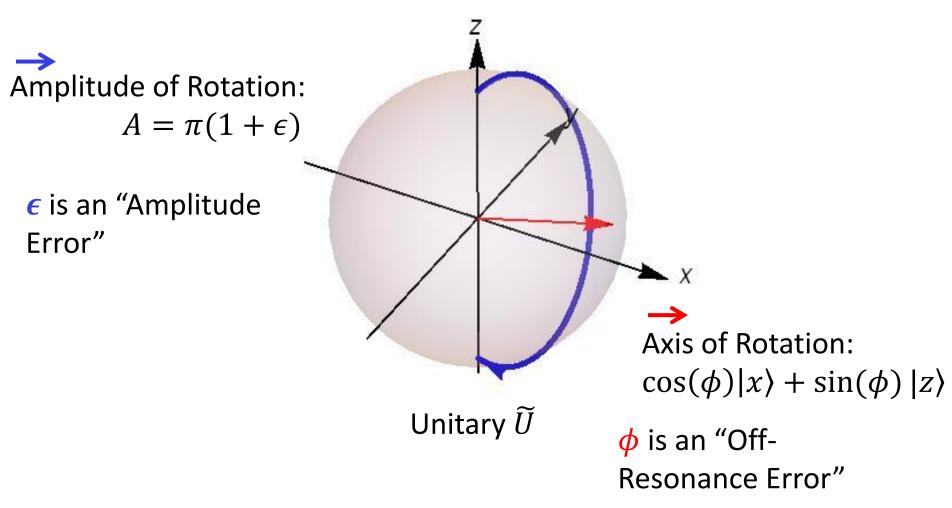


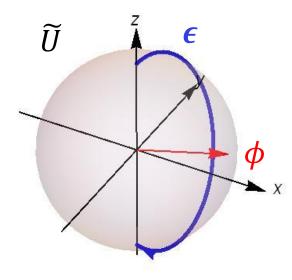
Ideal Unitary U

Need to Calibrate Operations

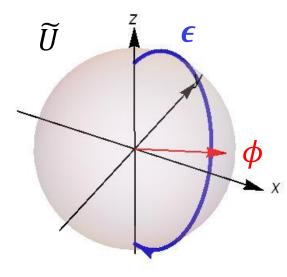


Need to Calibrate Operations

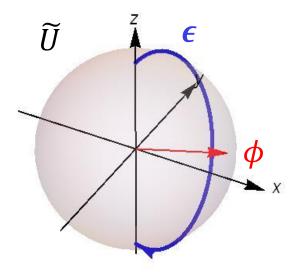




Ad hoc Rabi – Ramsey Sequences.

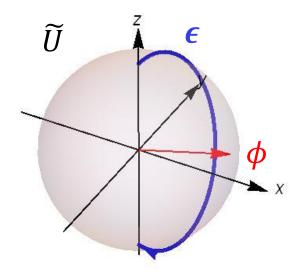


Process Tomography [Chuang & Nielsen '97]

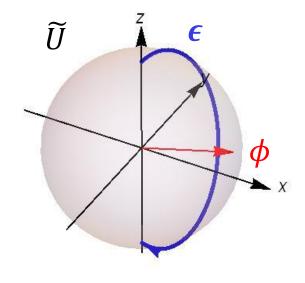


Process Tomography

- Need perfect state preparation and measurement
- Need perfect additional gates
- Time consuming: need to learn 12 parameters to extract ϕ and ϵ

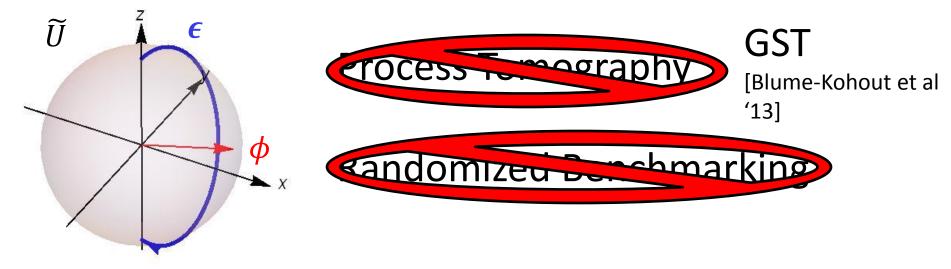


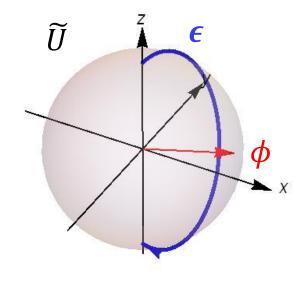
Randomized Benchmarking Tomography



Randomized Benchmarking

- Don't need perfect state preparation and measurement
- Must be able to perform single-qubit Cliffords (although not perfectly)
- Time consuming: need to learn 9 parameters to extract ϕ and ϵ



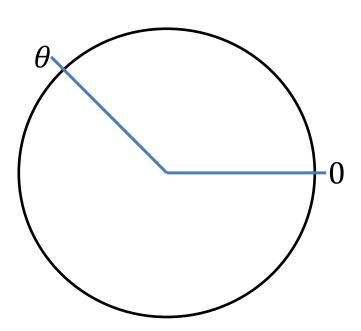


Robust Phase Estimation

- Don't need perfect state preparation and measurement
- No additional gates, except Z-rotations
- Learn ϕ and ϵ with optimal efficiency
- Non-adaptive
- Accommodates additional errors like depolarizing noise.

Outline

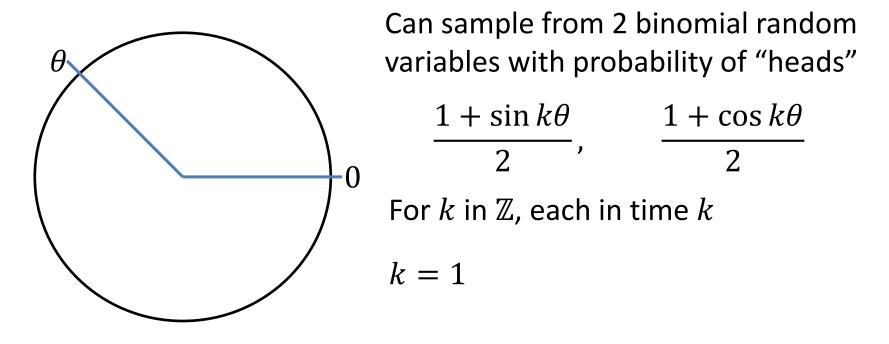
- Motivation for Robust Phase Estimation
- Robust phase estimation
- Application to Parameter Estimation



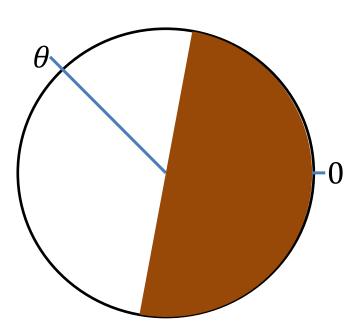
Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}, \qquad \frac{1+\cos k\theta}{2}$$

For k in \mathbb{Z} , each in time k



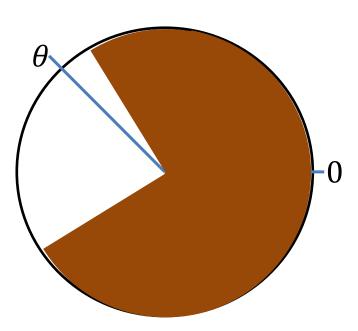
Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{\sqrt{T}}$



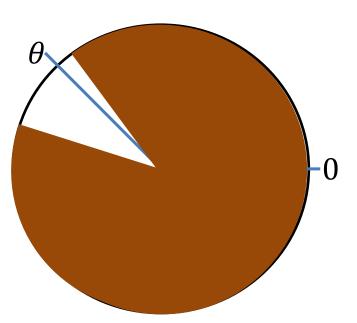
$$\frac{1 + \sin k\theta}{2}, \qquad \frac{1 + \cos k\theta}{2}$$

For k in Z, each in time k

$$k = 1$$



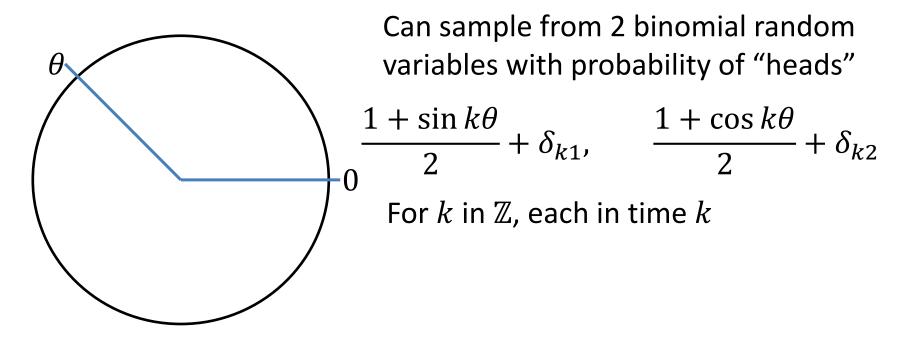
$$\frac{1 + \sin k\theta}{2}, \qquad \frac{1 + \cos k\theta}{2}$$
For k in Z, each in time k
$$k = 1 \qquad k = 2$$

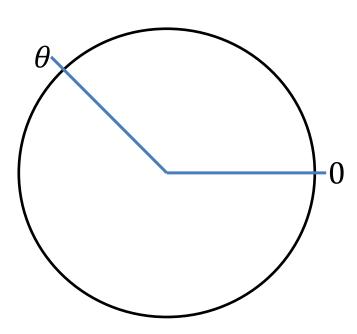


$$\frac{1 + \sin k\theta}{2}, \qquad \frac{1 + \cos k\theta}{2}$$
For k in Z, each in time k
$$k = 1 \qquad k = 2 \qquad k = 4$$

Can sample from 2 binomial random variables with probability of "heads" $\frac{1 + \sin k\theta}{2}, \quad \frac{1 + \cos k\theta}{2}$ For k in Z, each in time k k = 1 k = 2 k = 4 k = 8

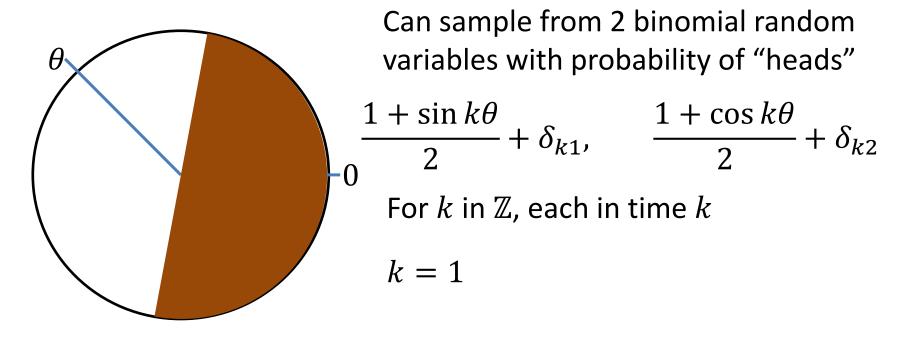
Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{T}$ Optimal – by information theory.

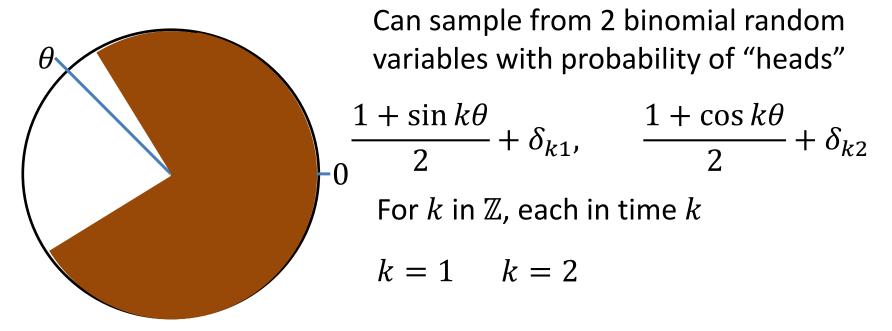


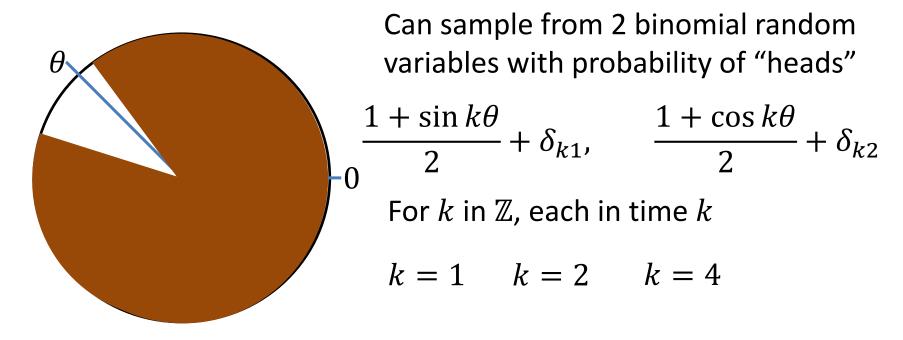


$$\frac{1 + \sin \theta}{2} + \delta_{k1}, \qquad \frac{1 + \cos \theta}{2} + \delta_{k2}$$

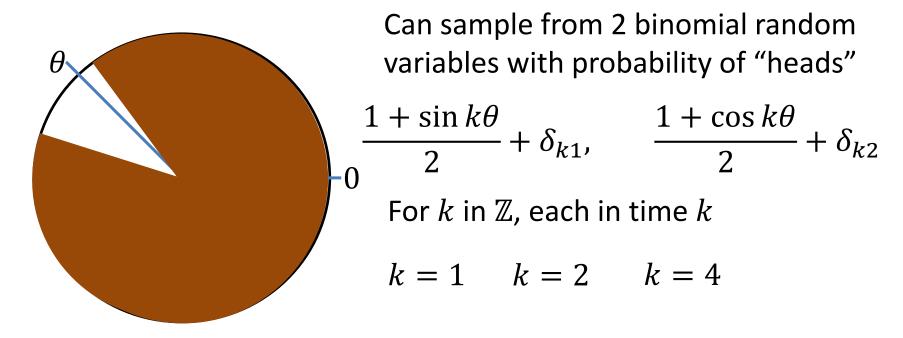
Using only $k = 1$ can't get an accurate estimate!







Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{T}$, as long as $|\delta_k| < .35$ for all k.

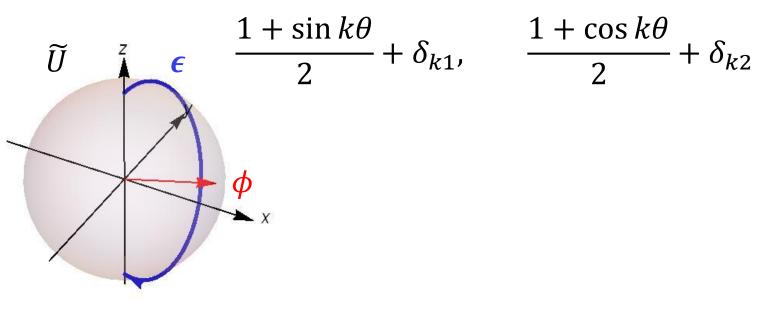


Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{T}$, as long as $|\delta_k| < .35$ for all k.

...but need upper bound on size of δ to know how many extra samples to take.

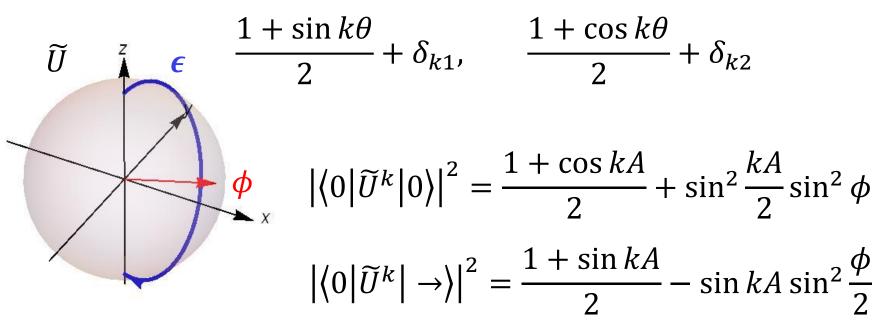
Robust Phase Estimation for Gate Estimation

Want 2-outcome experiments with probabilities like:



Robust Phase Estimation for Gate Estimation

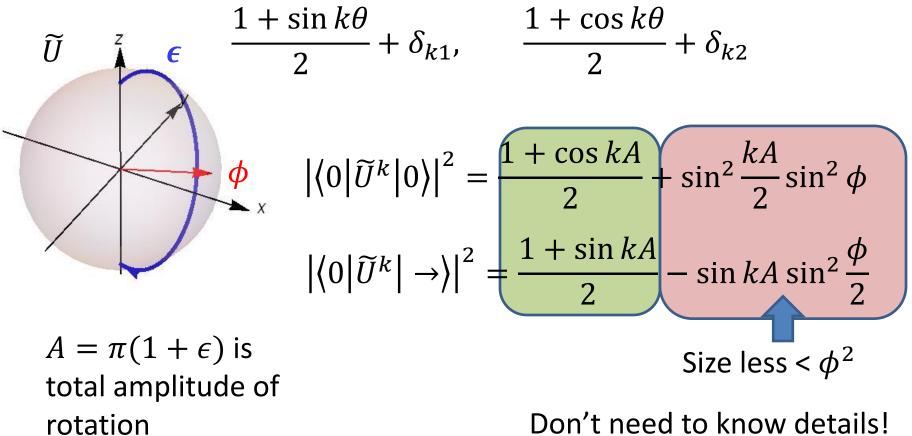
Want 2-outcome experiments with probabilities:



 $A = \pi(1 + \epsilon)$ is total amplitude of rotation

Robust Phase Estimation for Gate Estimation

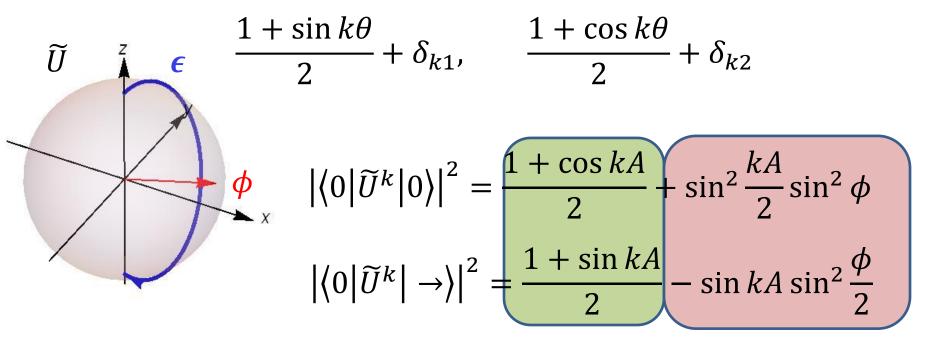
Want 2-outcome experiments with probabilities:



Don't need to know details!

Robust Phase Estimation for Gate Estimation

Want 2-outcome experiments with probabilities:



Heisenberg limited! Estimate of ϵ with standard deviation $\sigma(\epsilon) \sim \frac{1}{N}$, where N is the number of times \widetilde{U} is applied.

Robust Phase Estimation for Gate Estimation

Want 2-outcome experiments with probabilities: $\begin{array}{l} \widetilde{U} \\ \widetilde{V} \\ \widetilde{$

Heisenberg limited! Estimate of ϕ with standard deviation $\sigma(\phi) \sim \frac{1}{N}$, where N is the number of times \widetilde{U} is applied.

Additional Errors

Looks like need perfect $|\langle 0|\widetilde{U}^k| \rightarrow \rangle|^2$

Additional Errors

Looks like need perfect $|\langle 0|\tilde{U}^k| \rightarrow \rangle|^2$

All of the following errors simply contribute to δ errors

- Imperfect state preparation
- Imperfect measurement
- Additional errors like depolarizing errors
- Imperfect Z rotation

Example: State Preparation Errors Add to δ errors

Want: $|\langle 0|\widetilde{U}^k| \rightarrow \rangle|^2$

Suppose can only prepare $|0\rangle$, measure $|0\rangle$. No perfect X-rotation, so can't prepare $|\rightarrow\rangle$. Instead prepare ρ'_{\rightarrow}

Example: State Preparation Errors Add to δ errors

Want: $|\langle 0|\widetilde{U}^k| \rightarrow \rangle|^2$

Suppose can only prepare $|0\rangle$, measure $|0\rangle$. No perfect X-rotation, so can't prepare $|\rightarrow\rangle$. Instead prepare ρ'_{\rightarrow}

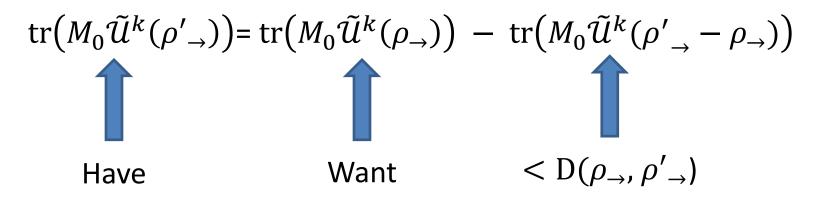
Trace Distance: $D(\rho, \sigma)$ = maximum difference in probability between any two experiments on states ρ, σ .

Thus if use ρ_{\rightarrow} instead of $|\rightarrow\rangle$, δ error changes by at most $D(\rho'_{\rightarrow}, |\rightarrow\rangle\langle\rightarrow|)$

Example: State Preparation Errors Add to δ errors

Want experiment with outcome probability: $|\langle 0|\tilde{U}^k| \rightarrow \rangle|^2 = \operatorname{tr}(M_0 \tilde{\mathcal{U}}^k(\rho_{\rightarrow}))$

Have experiment with outcome probability: $\operatorname{tr}(M_0 \tilde{\mathcal{U}}^k(\rho'_{\rightarrow}))$



Additional Errors

Looks like need perfect $|\langle 0|\tilde{U}^k| \rightarrow \rangle|^2$

All of the following errors simply contribute to δ errors

- Imperfect state preparation
- Imperfect measurement
- Additional errors like depolarizing errors
- Imperfect Z rotation

Can incorporate any error, as long as can bound how much that error will shift your outcome probability (and total shift is less than .35)

Bounding δ Errors

Need upper bounds on

- Size of ϕ , ϵ
- Trace distance between ideal and true state preparation
- "Trace distance" between ideal and true measurement

We provide simple (length-0/1) sequences to upper bound these quantities.

Sample Procedure

- 1. Bound δ errors
- 2. Choose # of samples to take each round based on size of δ errors and desired precision
- 3. Robust phase estimation on ϵ .
- 4. Robust phase estimation on θ .
- 5. Use controls to correct errors, repeat.

Sample Procedure

- 1. Bound δ errors
- 2. Choose # of samples to take each round based on size of δ errors and desired precision
- 3. Robust phase estimation on ϵ .
- 4. Robust phase estimation on θ .
- 5. Use controls to correct errors, repeat.

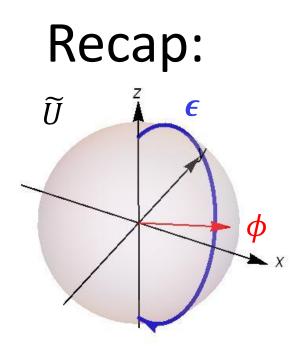
If bad δ bounds, ϵ , θ estimates accurate, just not as precise.

Sample Procedure

- 1. Bound δ errors
- 2. Choose # of samples to take each round based on size of δ errors and desired precision
- 3. Robust phase estimation on ϵ .
- 4. Robust phase estimation on θ .
- 5. Use controls to correct errors, repeat.

If bad δ bounds, ϵ , θ estimates accurate, just not as precise.

e.g. Controls have 5 digits of precision. Estimate ϵ , θ to 5 digits of precision, but after correcting still inaccurate at 3 digits of precision. δ errors could be cause.



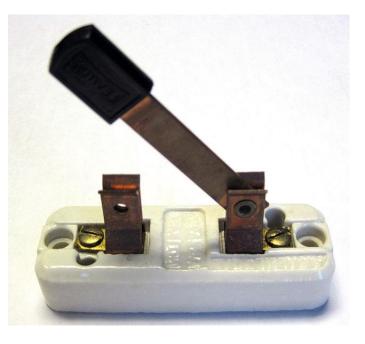
Robust Phase Estimation

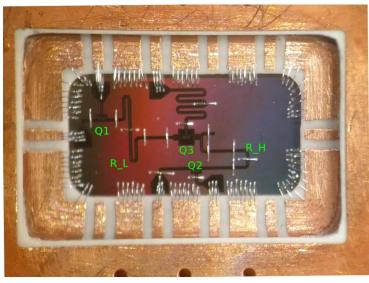
- Don't need perfect state preparation and measurement
- No additional gates, except Z-rotations
- Learn ϕ and ϵ with optimal efficiency
- Non-adaptive
- Accommodates additional errors like depolarizing noise.

Open Questions

- Multi-Qubit Operations?
- No perfect Z-rotation?
- Connection to Randomized Benchmarking

Think this might be useful?

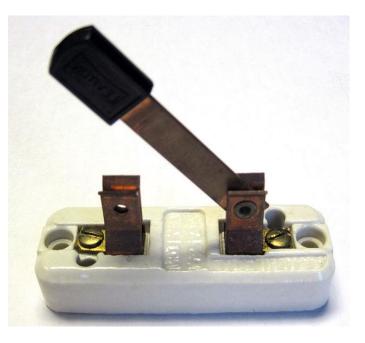


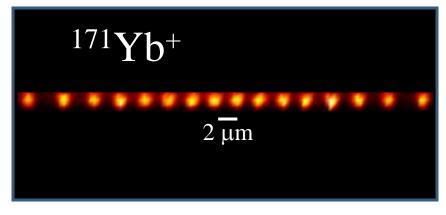


[BBN]

Arxiv: 1502.02677

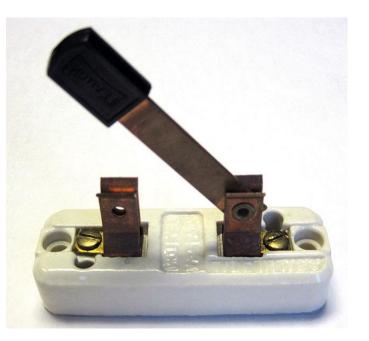
Imagine...

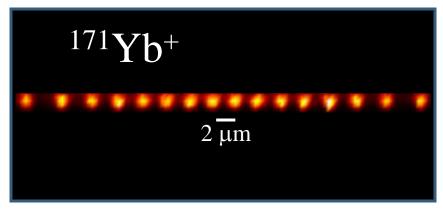




[Monroe Lab]

Imagine...





[Monroe Lab]

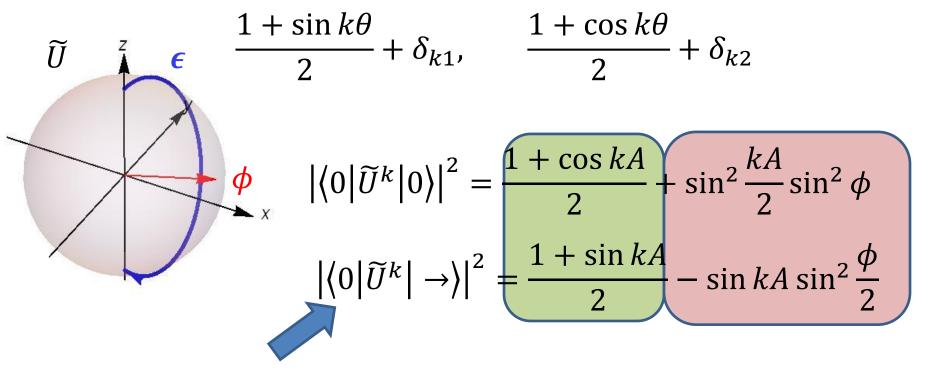
- All gates need to be tuned
- State preparation is off
- Measurements are off

Want to quickly determine imperfections in gate controls and then tune to fix.

Proof Sketch

Robust Phase Estimation for Gate Estimation

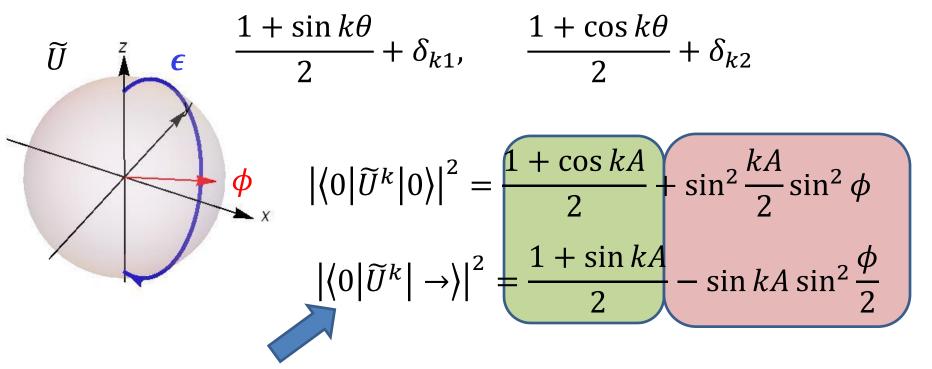
Want 2-outcome experiments with probabilities:



Don't have perfect state prep and measurement? OK! Just add to δ error.

Robust Phase Estimation for Gate Estimation

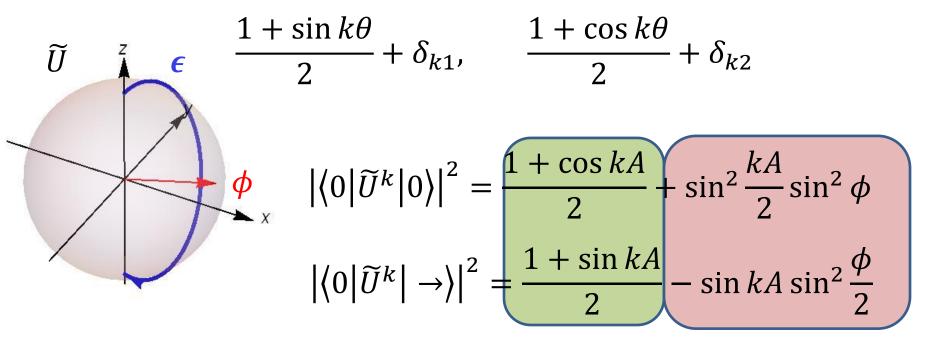
Want 2-outcome experiments with probabilities:



Have depolarizing errors? OK! Just add to δ errors.

Robust Phase Estimation for Gate Estimation

Want 2-outcome experiments with probabilities:



Heisenberg limited! Estimate of ϵ with standard deviation $\sigma(\epsilon) \sim \frac{1}{N}$, where N is the number of times \widetilde{U} is applied.