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Imagine… 



Imagine… 
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Imagine… 

• All gates need to be tuned 
• State preparation is off 
• Measurements are off 

Want to quickly determine 
imperfections in gate 
controls and then tune to fix. 

[BBN] 



Need to Calibrate Operations 

Axis of Rotation: 𝑥  

Amplitude of Rotation: 𝜋 

Ideal Unitary 𝑈 



Need to Calibrate Operations 

Amplitude of Rotation:  
𝐴 = 𝜋(1 + 𝜖) 

Axis of Rotation: 
cos 𝜙 𝑥 + sin 𝜙 𝑧  
 Unitary 𝑈  



Need to Calibrate Operations 

Amplitude of Rotation:  
𝐴 = 𝜋(1 + 𝜖) 

𝜙 is an “Off-
Resonance Error” 

𝝐 is an “Amplitude 
Error” 

Axis of Rotation: 
cos 𝜙 𝑥 + sin(𝜙) |𝑧  
 Unitary 𝑈  



𝝐 
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How to Estimate Control Errors 

Ad hoc Rabi – Ramsey 
Sequences. 

𝑈  
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How to Estimate Control Errors 

Process Tomography [Chuang & Nielsen ’97] 

𝑈  



𝝐 

𝜙 

How to Estimate Control Errors 

Process Tomography 

• Need perfect state preparation and 
measurement 

• Need perfect additional gates 
• Time consuming: need to learn 12 

parameters to extract 𝜙 and ϵ 

𝑈  
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How to Estimate Control Errors 

Process Tomography 

Randomized Benchmarking 
Tomography 

𝑈  
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How to Estimate Control Errors 

Process Tomography 

Randomized Benchmarking 

𝑈  

• Don’t need perfect state preparation and 
measurement  

• Must be able to perform single-qubit 
Cliffords (although not perfectly) 

• Time consuming: need to learn 9 
parameters to extract 𝜙 and 𝜖 
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How to Estimate Control Errors 

Process Tomography 

Randomized Benchmarking 
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How to Estimate Control Errors 

Process Tomography 

Randomized Benchmarking 

𝑈  GST 
[Blume-Kohout et al 
‘13] 
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How to Estimate Control Errors 

Process Tomography 

Randomized Benchmarking 
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GST 



𝝐 

𝜙 

How to Estimate Control Errors 

Process Tomography 

Randomized Benchmarking 

Robust Phase Estimation 

• Don’t need perfect state preparation and 
measurement  

• No additional gates, except Z-rotations 
• Learn 𝜙 and 𝜖 with optimal efficiency 
• Non-adaptive 
• Accommodates additional errors like 

depolarizing noise. 

𝑈  
GST 



Outline 

• Motivation for Robust Phase Estimation 

• Robust phase estimation 

• Application to Parameter Estimation 



Phase Estimation [Higgins et al. ‘09] 
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Phase Estimation [Higgins et al. ‘09] 

𝜃 

0 

𝑘 = 8 

Can estimate 𝜃 with standard deviation 𝜎 𝜃 ∼
1

𝑇
 

Optimal – by information theory. 

𝑘 = 2 
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Robust Phase Estimation 
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Robust Phase Estimation 

𝜃 

0 
Using only 𝑘 = 1 can’t get an 
accurate estimate! 

Can sample from 2 binomial random 
variables with probability of “heads” 
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For 𝑘 in ℤ, each in time 𝑘 
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Robust Phase Estimation 

𝜃 

0 

Can estimate 𝜃 with standard deviation 𝜎 𝜃 ∼
1

𝑇
,  

as long as |𝛿𝑘| < .35 for all 𝑘. 
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Robust Phase Estimation 

𝜃 

0 

Can estimate 𝜃 with standard deviation 𝜎 𝜃 ∼
1

𝑇
,  

as long as |𝛿𝑘| < .35 for all 𝑘. 

1 + sin 𝑘𝜃

2
+ 𝛿𝑘1,

1 + cos 𝑘𝜃

2
+ 𝛿𝑘2 

For 𝑘 in ℤ, each in time 𝑘 

𝑘 = 2 𝑘 = 1 𝑘 = 4 

Can sample from 2 binomial random 
variables with probability of “heads” 

…but need upper bound on size of 𝛿 to know how 
many extra samples to take.  
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Robust Phase Estimation for Gate 
Estimation 
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Want 2-outcome experiments with probabilities like: 

𝑈  
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Robust Phase Estimation for Gate 
Estimation 
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1 + sin 𝑘𝜃
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Want 2-outcome experiments with probabilities: 

𝐴 = 𝜋(1 + 𝜖) is 
total amplitude of 
rotation 

𝑈  
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Robust Phase Estimation for Gate 
Estimation 
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1 + sin 𝑘𝜃

2
+ 𝛿𝑘1,

1 + cos 𝑘𝜃

2
+ 𝛿𝑘2 

Want 2-outcome experiments with probabilities: 

𝑈  

𝐴 = 𝜋(1 + 𝜖) is 
total amplitude of 
rotation  Don’t need to know details! 
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Robust Phase Estimation for Gate 
Estimation 

0 𝑈 𝑘 0
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2
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Want 2-outcome experiments with probabilities: 

Heisenberg limited! Estimate of 𝜖 with standard deviation 𝜎 𝜖 ∼
1

𝑁
, 

where 𝑁 is the number of times 𝑈  is applied.  

𝑈  
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Robust Phase Estimation for Gate 
Estimation 

0 (𝑍−𝜋/2𝑈 𝑍𝜋𝑈 𝑍−𝜋/2)
𝑘 0

2
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2
+ 𝑂(𝜖2) 

0 (𝑍−𝜋/2𝑈 𝑍𝜋𝑈 𝑍−𝜋/2)
𝑘 →

2
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1 + sin𝑚𝜖𝑘𝜙

2
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2
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2
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Want 2-outcome experiments with probabilities: 𝑈  

Heisenberg limited! Estimate of 𝜙 with standard deviation 𝜎 𝜙 ∼
1

𝑁
, 

where 𝑁 is the number of times 𝑈  is applied.  
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All of the following errors simply contribute to 𝛿 errors 
• Imperfect state preparation 
• Imperfect measurement 
• Additional errors like depolarizing errors  
• Imperfect Z rotation 



Example: State Preparation Errors Add 
to 𝛿 errors 

Want: 0 𝑈 𝑘 →
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Suppose can only prepare 0 , measure 0 .  
No perfect X-rotation, so can’t prepare |→ .  
Instead prepare 𝜌′→ 



Example: State Preparation Errors Add 
to 𝛿 errors 

Want: 0 𝑈 𝑘 →
2

 

 
Suppose can only prepare 0 , measure 0 .  
No perfect X-rotation, so can’t prepare |→ .  
Instead prepare 𝜌′→ 

Trace Distance: D(𝜌, 𝜎) = maximum difference in probability 
between any two experiments on states 𝜌, 𝜎. 
 
Thus if use 𝜌→ instead of |→ , 𝛿 error changes by at most  
D(𝜌′→, |→ ⟨→|)  



Example: State Preparation Errors Add 
to 𝛿 errors 

Want experiment with outcome probability:  

0 𝑈 𝑘 →
2

= tr 𝑀0𝒰 
𝑘 𝜌→  

 
Have experiment with outcome probability:   

tr 𝑀0𝒰 
𝑘 𝜌′→  

tr 𝑀0𝒰 
𝑘 𝜌′→ = tr 𝑀0𝒰 

𝑘 𝜌→  −  tr 𝑀0𝒰 
𝑘(𝜌′→ − 𝜌→)  

< D(𝜌→, 𝜌′→)  Have Want 



Additional Errors 

Looks like need perfect 0 𝑈 𝑘 →
2

 

All of the following errors simply contribute to 𝛿 errors 
• Imperfect state preparation 
• Imperfect measurement 
• Additional errors like depolarizing errors  
• Imperfect Z rotation 

Can incorporate any error, as long as can bound how 
much that error will shift your outcome probability 
(and total shift is less than .35) 



Bounding 𝛿 Errors 

Need upper bounds on  
• Size of 𝜙, 𝜖  
• Trace distance between ideal and true state preparation 
• “Trace distance” between ideal and true measurement 

We provide simple (length-0/1) sequences to upper 
bound these quantities. 



Sample Procedure 

1. Bound 𝛿 errors 
2. Choose # of samples to take each round based on size of 𝛿 

errors and desired precision 
3. Robust phase estimation on 𝜖. 
4. Robust phase estimation on 𝜃. 
5. Use controls to correct errors, repeat. 
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Sample Procedure 

1. Bound 𝛿 errors 
2. Choose # of samples to take each round based on size of 𝛿 

errors and desired precision 
3. Robust phase estimation on 𝜖. 
4. Robust phase estimation on 𝜃. 
5. Use controls to correct errors, repeat. 
 
 

If bad 𝛿 bounds, 𝜖, 𝜃 estimates accurate, just not as precise.  
 
 

e.g. Controls have 5 digits of precision. Estimate 𝜖, 𝜃 to 5 digits of 
precision, but after correcting still inaccurate at 3 digits of 
precision. 𝛿 errors could be cause. 
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Recap: 
Robust Phase Estimation 

• Don’t need perfect state preparation and 
measurement  

• No additional gates, except Z-rotations 
• Learn 𝜙 and 𝜖 with optimal efficiency 
• Non-adaptive 
• Accommodates additional errors like 

depolarizing noise. 

𝑈  

Open Questions 
• Multi-Qubit Operations? 
• No perfect Z-rotation? 
• Connection to Randomized Benchmarking 



Think this might be useful? 

Arxiv: 1502.02677 

[BBN] 



Imagine… 

171Yb+ 

2 mm 

[Monroe Lab] 



Imagine… 

• All gates need to be tuned 
• State preparation is off 
• Measurements are off 

Want to quickly determine 
imperfections in gate 
controls and then tune to fix. 

171Yb+ 

2 mm 

[Monroe Lab] 
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Want 2-outcome experiments with probabilities: 

Don’t have perfect state prep and 
measurement? OK! Just add to 𝛿 error. 
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1 + sin 𝑘𝜃

2
+ 𝛿𝑘1,

1 + cos 𝑘𝜃

2
+ 𝛿𝑘2 

Want 2-outcome experiments with probabilities: 

Have depolarizing errors? OK! Just add to 𝛿 
errors. 

𝑈  
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Robust Phase Estimation for Gate 
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where 𝑁 is the number of times 𝑈  is applied.  
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