Characterizing Quantum Operations

Shelby Kimmel

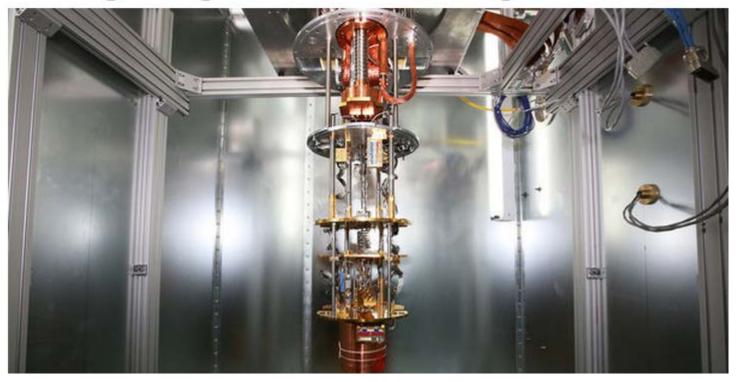
Joint work with Marcus Silva, Raytheon BBN Technologies

Quantum Computers Will Be Cool

The New York Times

Technology

A Strange Computer Promises Great Speed



By QUENTIN HARDY, Published: March 21, 2013

Quantum Computers Will Be Cool

Faster Computation

Quantum Fourier Transform

Faster Search

New Crypto
Systems
(Protected by the Laws of Physics)

Factor Large Numbers

Break Current Crypto Systems

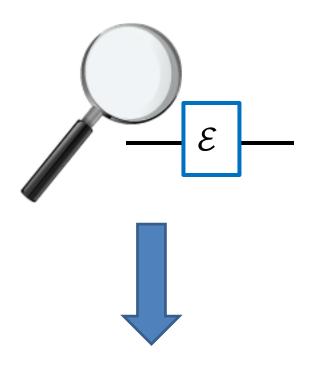
Why Don't We All Have One?

Too Many Errors

Can Improve Operations with Better Characterization of Errors



Standard Techniques Have Problems

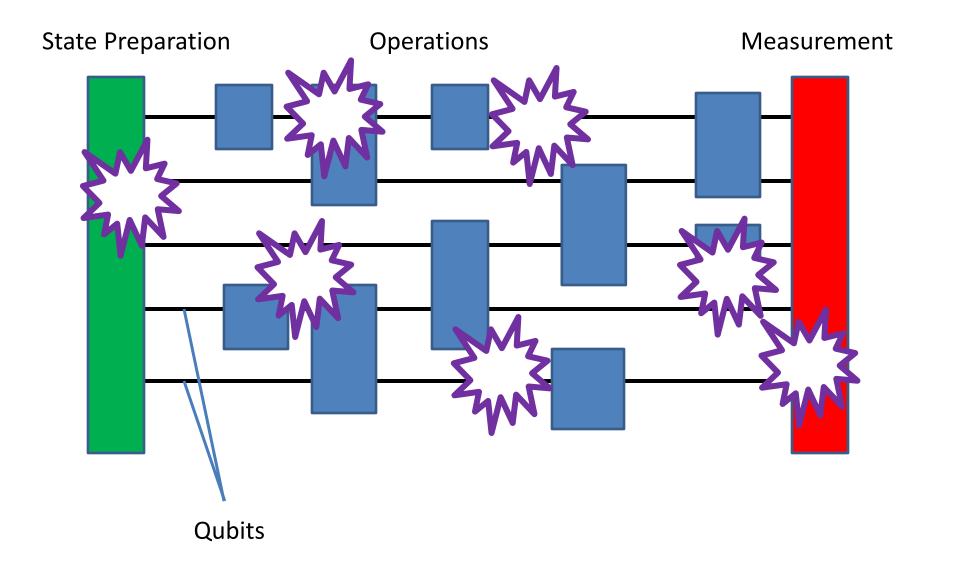


Often, outcome is not a valid quantum operation!

Outline: Improving Quantum Process Characterization

- Motivation: Process Characterization can improve errors and thus lead towards the realization of a quantum computer
- **Problem**: Standard techniques for process characterization have systematic errors
- Solution: We provide a way to get around these systematic errors and get lots of useful information about quantum operations. (Magesan et al. '11, '12, Kimmel and Silva...soon!)

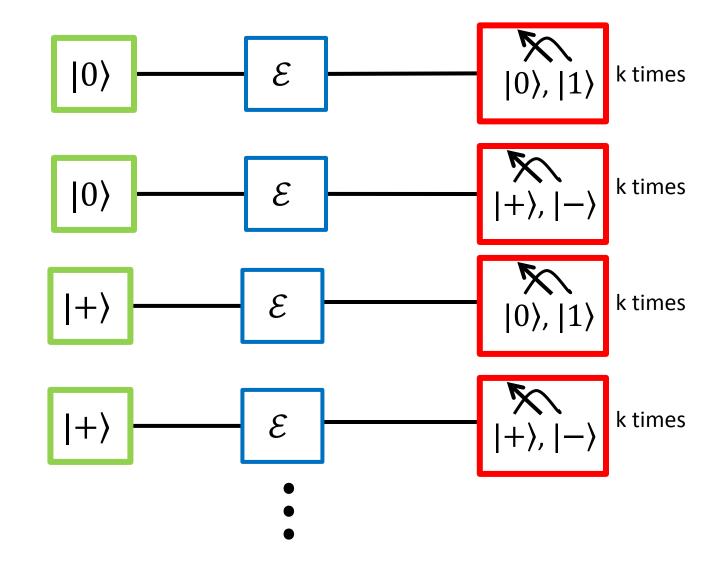
Quantum Computation (Circuit Model)



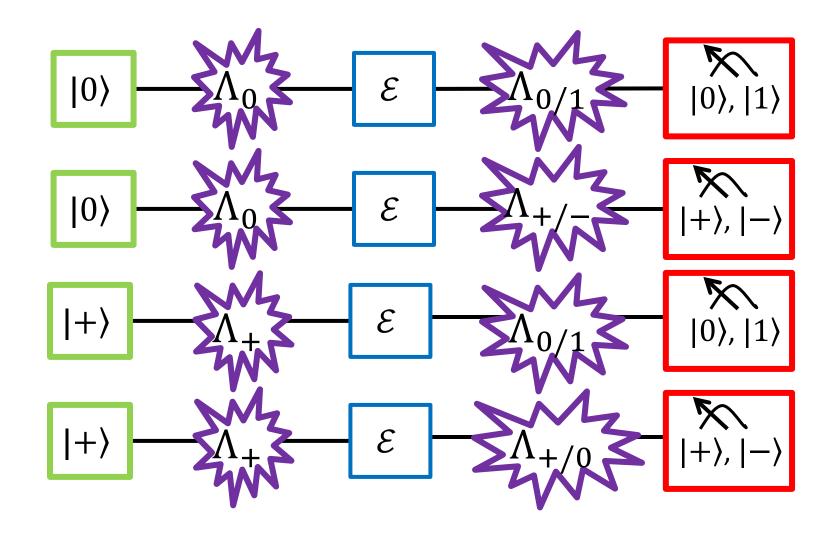
Quantum Process

- Completely positive trace preserving (CPTP)
 map = any process that takes valid quantum
 states to valid quantum states.
- E.g. unitary, depolarizing process, dephasing process, amplitude damping process
- n qubits, $16^n 4^n$ free parameters

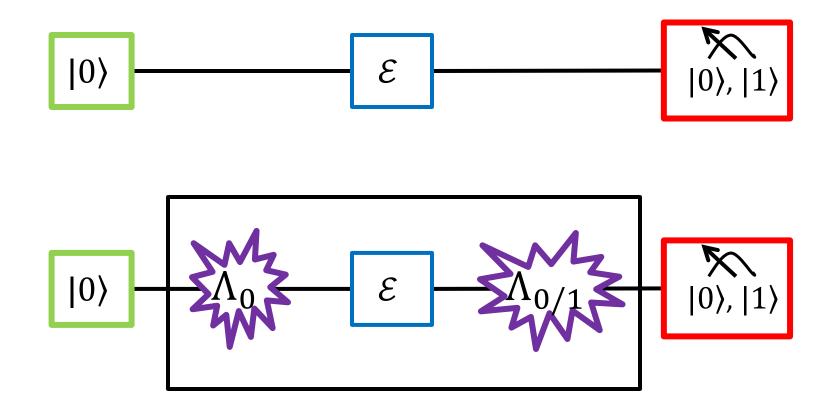
Standard Quantum Process Characterization



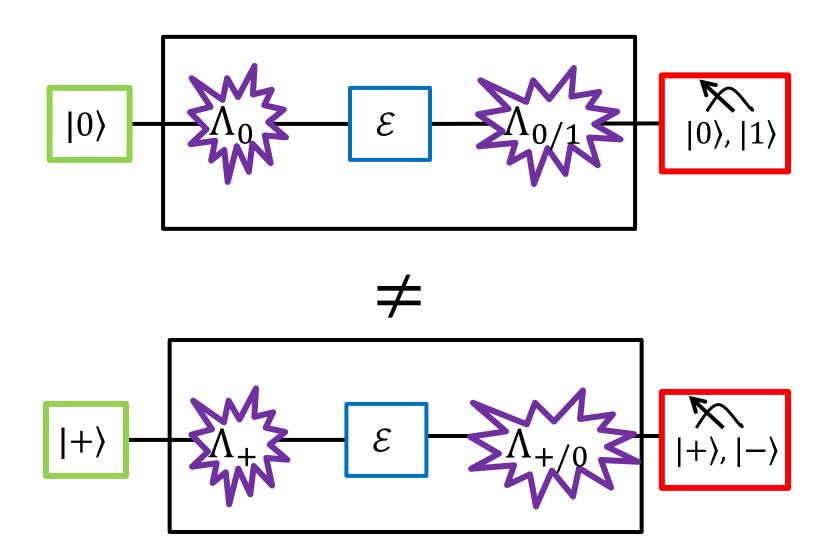
The Problem



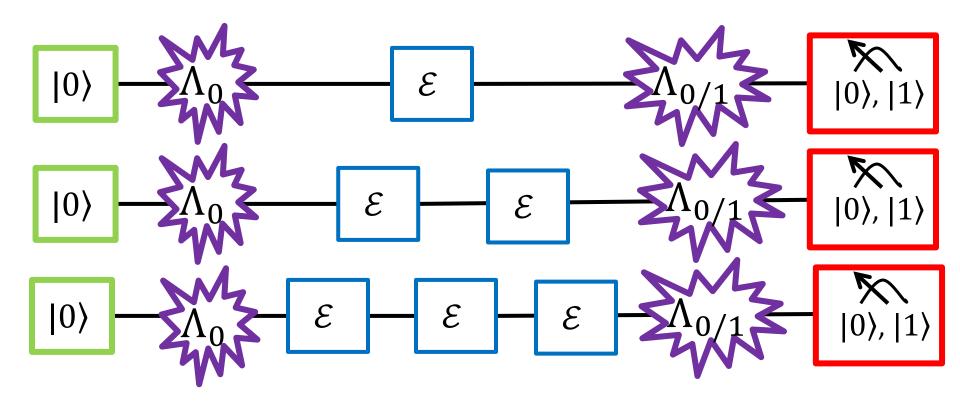
The Problem



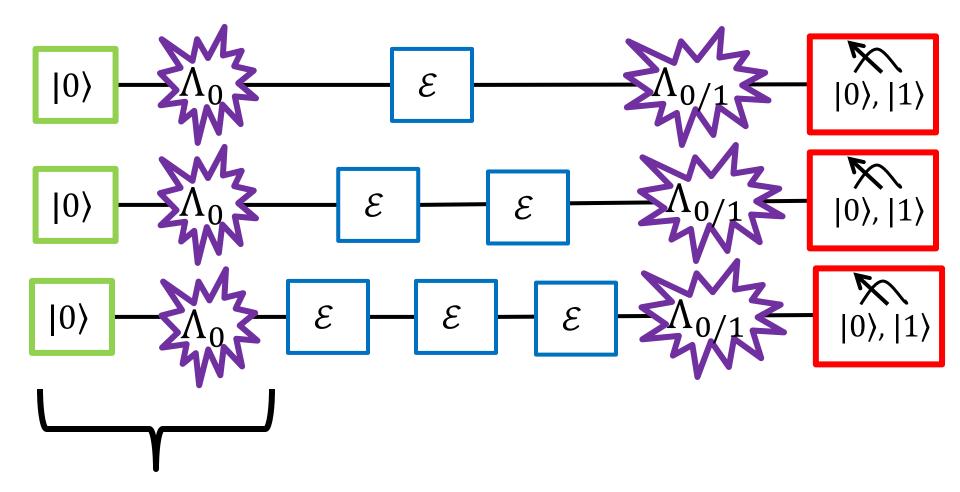
The Problem



Repeated Application

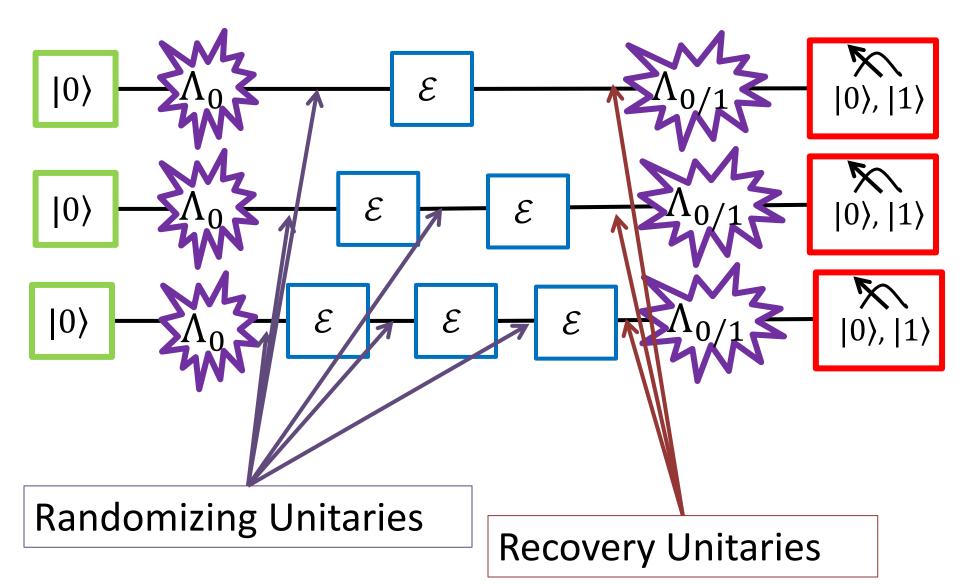


Repeated Application

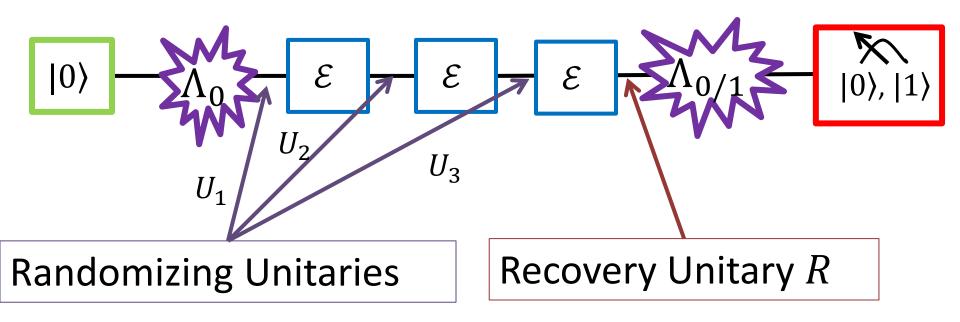


If eigenstate of \mathcal{E} , will only see how \mathcal{E} acts on this state

Repeated Application



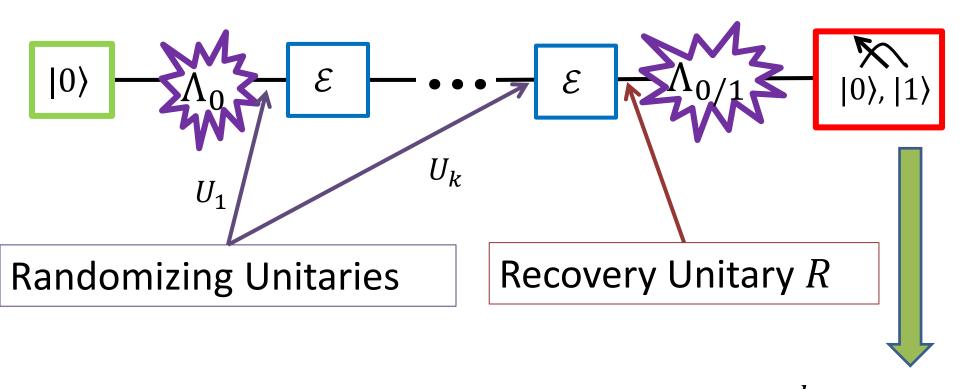
Recovery Operation



Pick a unitary V to compare $\mathcal E$ with. Then

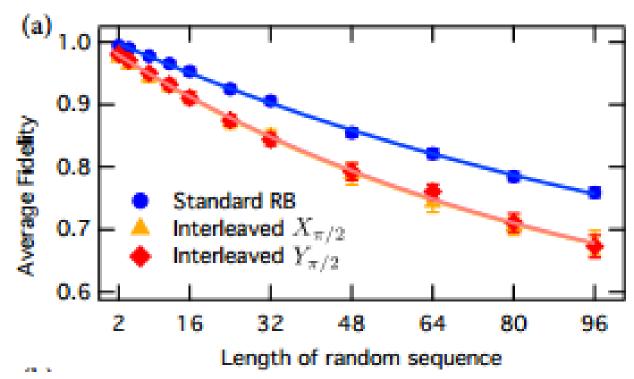
$$R = (U_1 \ V \ U_2 \ V \ U_3 \ V)^{\dagger}$$

Randomizing Operations



Prob. of outcome 0: $Ap^k + B$ A, B depend on $\Lambda_0, \Lambda_{0/1}$ p depends on overlap of \mathcal{E} with V

Randomizing Operations

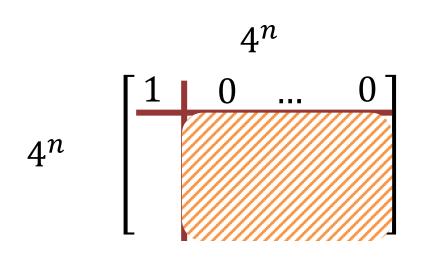


Magesan et al. '12

Prob. of outcome 0: $Ap^k + B$ A, B depend on $\Lambda_0, \Lambda_{0/1}$ p depends on overlap of \mathcal{E} with V

"Overlap of \mathcal{E} with V?"

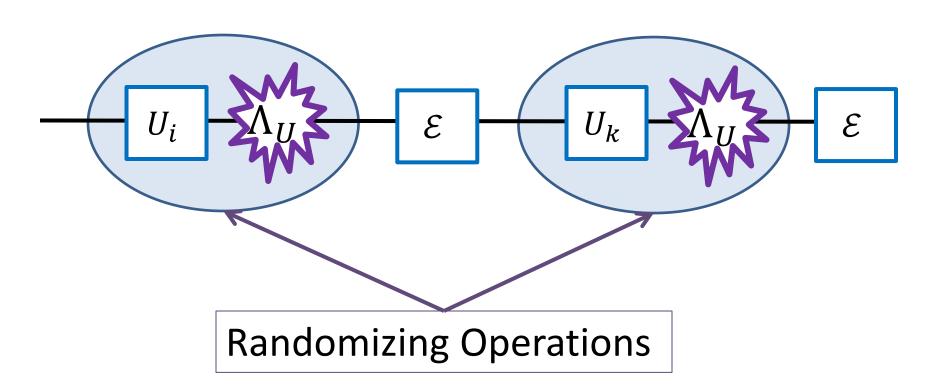
CPTP map: $16^n - 4^n$ parameters for n qubit map



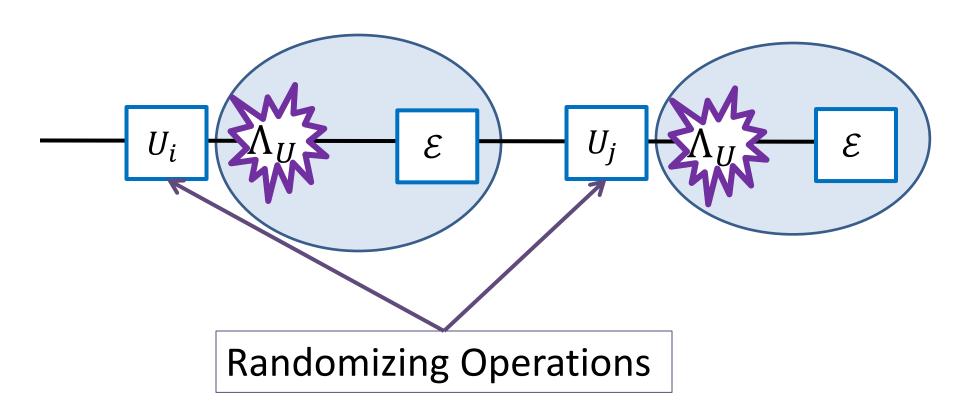
Choose many different V's and measure overlaps. Each overlap gives a new parameter of this matrix!

We learn: $16^n - 2 * 4^n + 1$ parameters

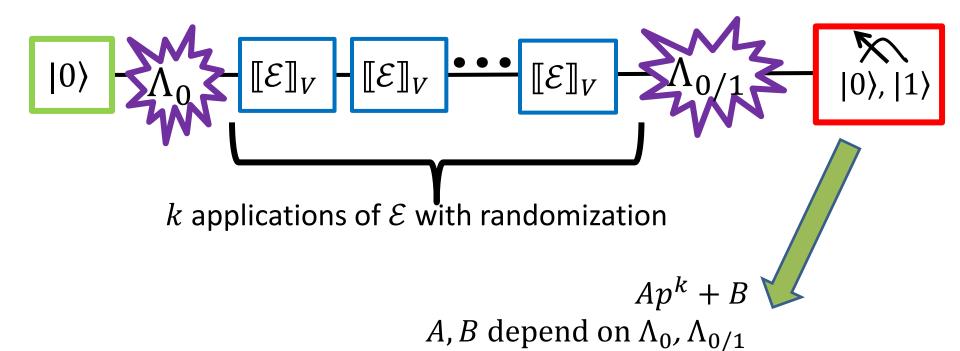
Errors!



Errors!



Randomizing Operations with Error

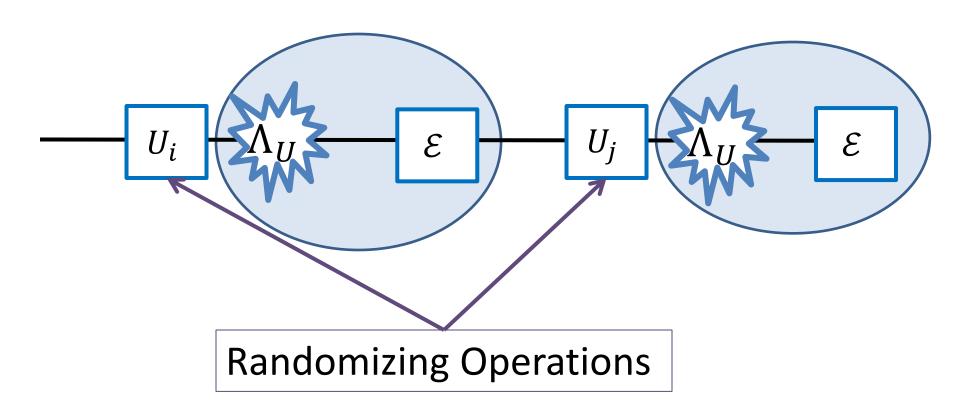


p depends on overlap of $\mathcal{E} \circ \Lambda_U$ with U

Trading One Error For Another?

- Originally had state preparation and measurement errors complicating things
- Now have randomizing errors complicating things
- BUT we can characterize randomizing errors!

Errors!



Randomizing Operations with Error



Main Result

almost complete characterization of Λ_U almost complete characterization of $\mathcal{E} \circ \Lambda_U$ almost complete characterization of ${\mathcal E}$

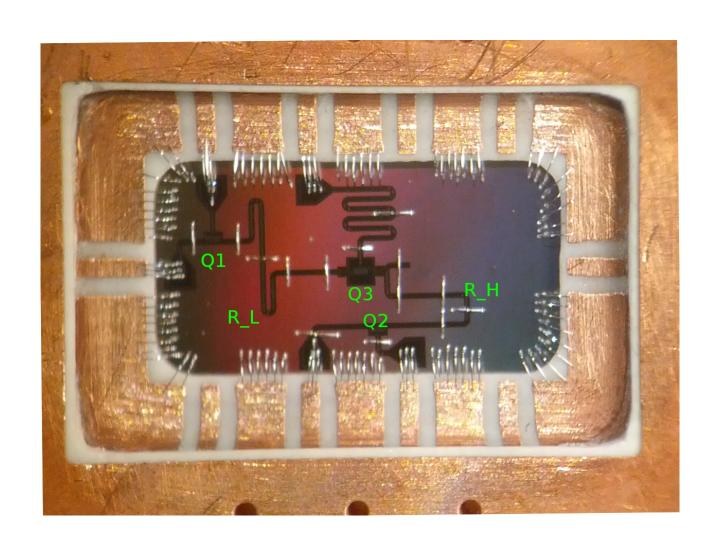
All without the systematic errors of previous procedures!

Experimental Procedure

- Repeat the following $\sim 16^n$ times
 - Pick a V
 - Run experiments of different lengths interleaving \mathcal{E} with random unitaries to compare $\mathcal{E} \circ \Lambda_{II}$ to V.
 - Run same experiments interleaving "null operation" with random unitaries to compare Λ_{II} to V.
- Use this data to reconstruct $\mathcal{E} \circ \Lambda_U$ and Λ_U
- Reconstruct \mathcal{E}

Process can take days...

Experimental Implementation



Questions?

BBN Quantum Information Group

Quantum Optics:

Journal of Modern Optics

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tmop20

Approaching Helstrom limits to optical pulse-position demodulation using single photon detection and optical feedback

Saikat Guha a, Jonathan L. Habif & M. Takeoka b

^a Raytheon BBN Technologies, 10 Moulton Street, Cambridge, MA 02138, USA

^b National Institute of Information and Communications Technology, 4-2-1 Nukui-kitamachi,

BBN Quantum Information Group

Quantum Optics:

PHYSICAL REVIEW A 80, 052310 (2009)

Gaussian-state quantum-illumination receivers for target detection

Saikat Guha¹ and Baris I. Erkmen²

¹Disruptive Information Processing Technologies, BBN Technologies, Cambridge, Massachusetts 02138, USA

²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA

(Received 23 July 2009; published 10 November 2009)

BBN Quantum Information Group

Super-Conducting Qubits:

Phys. Rev. Lett. 104, 163601 (2010) [4 pages]

Direct Observation of Coherent Population Trapping in a Superconducting Artificial Atom

Abstract References Citing Articles (20)

Download: PDF (680 kB) Buy this article Export: BibTeX or EndNote (RIS)

William R. Kelly*, Zachary Dutton†, John Schlafer, Bhaskar Mookerji, and Thomas A. Ohki‡
Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA

Jeffrey S. Kline and David P. Pappas

National Institute of Standards and Technology, Boulder, Colorado 80305, USA

Characterizing Quantum Operations

Shelby Kimmel

Joint work with Marcus Silva, Raytheon BBN Technologies

Trading 1 Error for Another?

- Compare $\mathcal{E} \circ \Lambda_C$ to U for lots of U's
 - Learn $(15^n + 1)$ of $(16^n 4^n)$ parameters of $\mathcal{E} \circ \Lambda_C$
- Do same but remove \mathcal{E} : Compare $\Lambda_{\mathcal{C}}$ to U for lots of U's
 - Learn $(15^n + 1)$ of $(16^n 4^n)$ parameters of Λ_C

Clifford Twirl

- Cliffords are a set of unitaries
 - Apply a random Clifford ~ apply a random unitary
 - Can efficiently simulate classically

Clifford Twirl of \mathcal{E} :

Choose a random Clifford C

$$\llbracket \varepsilon \rrbracket = - c - \varepsilon - c^{\dagger} - c^{\dagger}$$

Clifford Twirl

Outcome is same for any initial state:

$$\rho \longrightarrow \llbracket \varepsilon \rrbracket \longrightarrow p\rho + (1-p)\varrho_{\mathbb{I}}$$

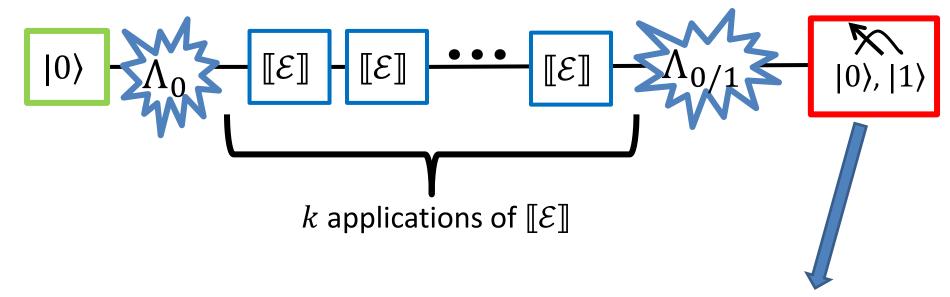
Composes Easily

$$\rho \longrightarrow \llbracket \varepsilon \rrbracket - \llbracket \varepsilon \rrbracket - \llbracket \varepsilon \rrbracket - p^3 \rho + (1 - p^3) \varrho_{\mathbb{I}}$$

Repeated Applications

Choose a random Clifford C

Repeated Applications



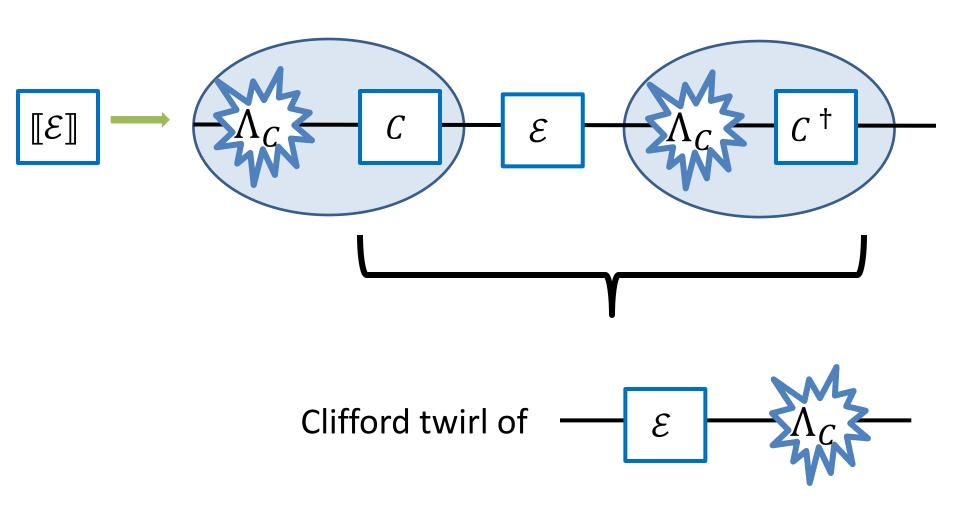
depends on closeness of ${\mathcal E}$ to U

Measurement Outcomes:

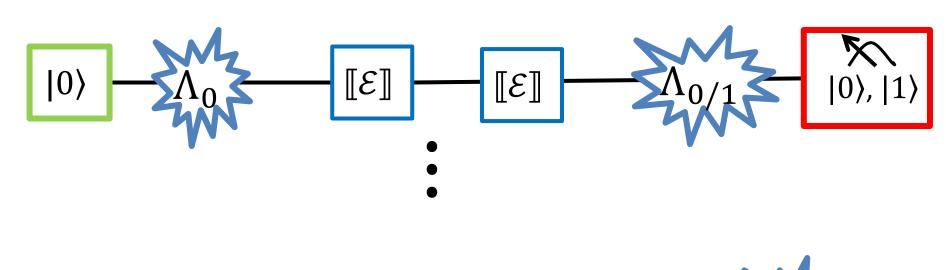
$$Ap^k + B$$

 A, B depend on $\Lambda_0, \Lambda_{0/1}$

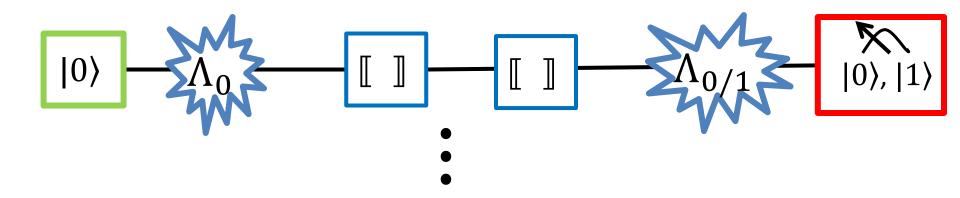
What about Errors!



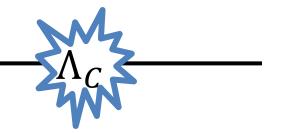
Procedure Step 1



Procedure Step 2



Learn p (probability of error) for



Procedure Step 3

Learn p (probability of error) for Learn p (probability of error) for Bound on p for

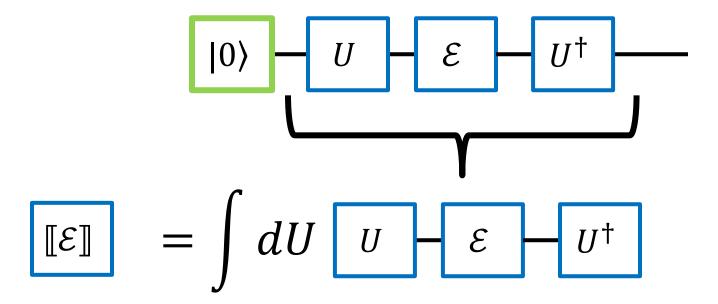
Need More Information!

Only learn 1 parameter: p

Need $16^n - 4^n$ parameters to get full process

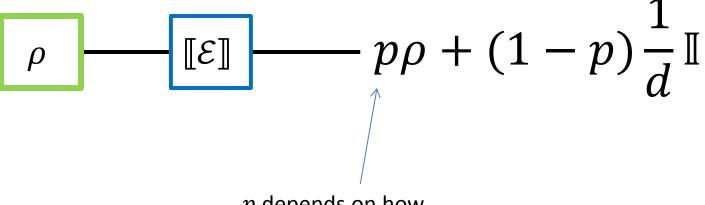
Twirling

What is action on an average state? Choose a random unitary U:



Twirling 2

$$\llbracket \varepsilon \rrbracket = \int dU \ U - \varepsilon - U^{\dagger}$$



p depends on how similar is to identity

Randomized Benchmarking (imagine no Error)

Inserting Clifford

Unital Block

What about Error

Experimental Implementation

The Problem

