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Quantum Device 



Quantum Process Characterization 

ℰ = ? 

ℰ(𝜌𝜌) =  � 𝜒𝜒𝑖𝑖,𝑗𝑗𝑃𝑃𝑖𝑖𝜌𝜌𝑃𝑃𝑗𝑗

4𝑛𝑛

𝑖𝑖,𝑗𝑗=1

 

Write ℰ in term of Pauli operators.   
(𝑛𝑛 qubits, 4𝑛𝑛 Pauli operations, 𝑃𝑃𝑖𝑖 = 𝑋𝑋⨂𝑌𝑌⨂ ⋅⋅⋅ ⨂𝐼𝐼⨂Z, etc.) 

For operation on 𝑛𝑛 qubits, 16𝑛𝑛 − 4𝑛𝑛 free parameters.  



Ideal Process Characterization 

Easy Post-
processing 

Scalable 

Large Access 

Robust 

Flexible  
Input 

Easy  
Implementation 

Experiment 
outcome is a 
selected 𝜒𝜒𝑖𝑖,𝑗𝑗 

Procedure uses high 
fidelity gates= local gates 

Can get information about 
many parameters (𝜒𝜒𝑖𝑖,𝑗𝑗) 

ℰ can be 
anything 



Robust Characterization 

𝑖𝑖 |𝜓𝜓𝑖𝑖⟩ ℰ 𝑏𝑏 𝑚𝑚𝑖𝑖,𝑏𝑏 

𝑖𝑖 |𝜓𝜓𝑖𝑖⟩ ℰ 
𝑏𝑏 

𝑚𝑚�𝑖𝑖,𝑏𝑏 Λ𝑏𝑏 Λ𝑖𝑖 

Accessing process involves preparing a state, 
and a measurement 



Nielsen and 
Chuang 

Ideal Process Characterization 
Scalable 

Large Access 

Robust 

Flexible  
Input 

Easy  
Implementation 

Selective 
Tomography 

Randomized 
Benchmarking 

Our 
Procedures 

Easy Post-
processing 

ℰ can be 
anything 

Can get information about 
many parameters (𝜒𝜒𝑖𝑖,𝑗𝑗) 

Experiment 
outcome is a 
selected 𝜒𝜒𝑖𝑖,𝑗𝑗 

Procedure uses high 
fidelity gates= local gates 



Neilsen and 
Chuang 

Ideal Process Characterization 
Scalable 

Large Access 

Robust 

Flexible  
Input 

Easy  
Implementation 

Selective 
Tomography 

Randomized 
Benchmarking 

Our 
Procedures 

Easy Post-
processing 

b 

ℰ can be 
anything 

Can get information about 
many parameters (𝜒𝜒𝑖𝑖,𝑗𝑗) 

Experiment 
outcome is a 
selected 𝜒𝜒𝑖𝑖,𝑗𝑗 

Procedure uses high 
fidelity gates= local gates 



Robust 

𝑖𝑖 |𝜓𝜓𝑖𝑖⟩ ℰ 
𝑏𝑏 

𝑚𝑚�𝑖𝑖,𝑏𝑏 Λ𝑏𝑏 Λ𝑖𝑖 

𝑖𝑖 |𝜓𝜓𝑖𝑖⟩ ℰ 

𝑏𝑏 
𝑚𝑚�𝑖𝑖,𝑏𝑏 Λ𝑏𝑏 

Λ𝑖𝑖 ℰ ℰ 

ℰ ℰ ⋯ 

𝑖𝑖 |𝜓𝜓𝑖𝑖⟩ ℰ 𝑚𝑚�𝑖𝑖,𝑏𝑏 Λ𝑏𝑏 Λ𝑖𝑖 ℰ 
𝑏𝑏 



Robust Cont. 

ℰ(𝜌𝜌) 𝑃𝑃 =
1

4𝑛𝑛
�𝑃𝑃𝑖𝑖† ∘ ℰ ∘ 𝑃𝑃𝑖𝑖(𝜌𝜌)
4𝑛𝑛

𝑖𝑖=1

 

ℰ(𝜌𝜌) 𝑃𝑃 = �𝜒𝜒𝑖𝑖,𝑖𝑖𝑃𝑃𝑖𝑖𝜌𝜌𝑃𝑃𝑖𝑖

4𝑛𝑛

𝑖𝑖=1

 

Pauli Twirl → tractable 

No off diagonal 
elements! 

Average over 
conjugation with 
all Paulis  



Robust Cont. 

𝑖𝑖 |𝜓𝜓𝑖𝑖⟩ ℰ 𝑃𝑃 
𝑏𝑏 

𝑚𝑚�𝑖𝑖,𝑏𝑏 Λ𝑏𝑏 Λ𝑖𝑖 

𝑖𝑖 |𝜓𝜓𝑖𝑖⟩ ℰ 𝑃𝑃 

𝑏𝑏 
𝑚𝑚�𝑖𝑖,𝑏𝑏 Λ𝑏𝑏 

Λ𝑖𝑖 ℰ 𝑃𝑃 ℰ 𝑃𝑃 

ℰ 𝑃𝑃 ℰ 𝑃𝑃 ⋯ 

𝑖𝑖 |𝜓𝜓𝑖𝑖⟩ ℰ 𝑃𝑃 𝑏𝑏 𝑚𝑚�𝑖𝑖,𝑏𝑏 Λ𝑏𝑏 Λ𝑖𝑖 ℰ 𝑃𝑃 



Robust Cont. 

Compared to Previous Robust Protocol: 
• Previous used a twirl that only preserved 𝜒𝜒𝐼𝐼,𝐼𝐼. 
• Even simpler form of ℰ, so analysis easier, but 

lost more information about 𝜒𝜒 matrix 



Easy Implementation 
To approximate the following operation, 

𝑖𝑖 |𝜓𝜓𝑖𝑖′⟩ ℰ 𝑃𝑃 𝑏𝑏′ ℰ 𝑃𝑃 

𝑖𝑖 |𝜓𝜓𝑖𝑖′⟩ ℰ 𝑏𝑏′ ℰ 𝑃𝑃𝑖𝑖𝑖 𝑃𝑃𝑖𝑖𝑖 

𝑃𝑃 = Choose Pauli             
Randomly 

𝑖𝑖 |𝜓𝜓𝑖𝑖⟩ ℰ 𝑏𝑏′ ℰ 𝑃𝑃𝑘𝑘𝑘 𝑃𝑃𝑘𝑘𝑘 

𝑚𝑚�𝑖𝑖,𝑏𝑏 

𝑚𝑚�1 

𝑚𝑚�2 

⋮ 

Finally: Average outcomes 

Do: 

𝑃𝑃𝑖𝑖𝑖 

𝑃𝑃𝑘𝑘𝑘 

𝑃𝑃𝑖𝑖𝑖 

𝑃𝑃𝑘𝑘𝑘 

Constant # of times 



Easy Implementation 

All Pauli operations are local, so can implement the 
above sequence with high fidelity! 
 
Still can’t implement perfectly! How do errors on 
Paulis effect the result? 
• Instead of exact values, get bounds on 𝜒𝜒 matrix 

elements. 

𝑖𝑖 |𝜓𝜓𝑖𝑖′⟩ ℰ 𝑏𝑏′ ℰ 𝑃𝑃𝑖𝑖𝑖 𝑃𝑃𝑖𝑖𝑖 𝑚𝑚�1 𝑃𝑃𝑖𝑖𝑖 𝑃𝑃𝑖𝑖𝑖 



Large Access 

𝑛𝑛 qubits: 
 # accesible parameters 

16𝑛𝑛 − 4𝑛𝑛 

0 
1 

ℰ(𝜌𝜌) =  � 𝜒𝜒𝑖𝑖,𝑗𝑗𝑃𝑃𝑖𝑖𝜌𝜌𝑃𝑃𝑗𝑗

4𝑛𝑛

𝑖𝑖,𝑗𝑗=1

 

N&C, Selective Tomography 

Randomized Benchmarking 



Large Access 

𝑛𝑛 qubits: 
 # accesible parameters 

16𝑛𝑛 − 4𝑛𝑛 

0 
1 

N&C, Selective Tomography 

Randomized Benchmarking 

ℰ(𝜌𝜌) 𝑃𝑃 = �𝜒𝜒𝑖𝑖,𝑖𝑖𝑃𝑃𝑖𝑖𝜌𝜌𝑃𝑃𝑖𝑖

4𝑛𝑛

𝑖𝑖=1

 

4𝑛𝑛 4𝑛𝑛 − 1 Repeated Pauli Twirling 



Large Access 

𝑈𝑈 𝑃𝑃𝑖𝑖 𝑈𝑈† → 𝑃𝑃𝑖𝑖�  

Pauli operators not unique! 

𝑈𝑈1⨂𝑈𝑈2⋯⨂𝑈𝑈𝑛𝑛 𝑃𝑃𝑖𝑖 𝑈𝑈1†⨂𝑈𝑈2† ⋯⨂𝑈𝑈𝑛𝑛† → 𝑃𝑃𝑖𝑖�  

Still want local operations: 

𝑃𝑃𝑖𝑖� → 𝜒𝜒𝑖𝑖�  



Large Access 

𝑛𝑛 qubits: 
 # accesible parameters 

16𝑛𝑛 − 4𝑛𝑛 

0 
1 

N&C, Selective Tomography 

Randomized Benchmarking 
4𝑛𝑛 − 1 Repeated Pauli Twirling 

7𝑛𝑛 − 1 Locally rotated repeated Pauli Twirling 

Non-Locally rotated repeated Pauli 
Twirling 𝑂𝑂(

16𝑛𝑛

2
) 



Large Access 

• Pauli Twirls→Clifford Twirls 
– Can characterize all unital 

operations. (ℰ 𝐼𝐼 = 𝐼𝐼) 
 
 

𝑛𝑛 qubits: 
 # accesible parameters 

16𝑛𝑛 − 4𝑛𝑛 

0 
1 

4𝑛𝑛 − 1 

7𝑛𝑛 − 1 

𝑂𝑂(
16𝑛𝑛

2
) 

16𝑛𝑛 − 2 × 4𝑛𝑛 + 1 



Bad News 

• Not Scalable/Post-Processing Hard 
– To extract single 𝜒𝜒𝑖𝑖,𝑖𝑖 need to learn 4𝑛𝑛 other 

parameters 𝜆𝜆𝑖𝑖 .   
– To extract a single 𝜆𝜆𝑖𝑖, need to fit for a sum of 

decaying exponentials, a notoriously tricky 
(although well studied) problem. 



To Do/Open Questions 

• Implement! 
• Get better trade offs between ease of 

implementation/ease of post-
processing/scalability? 



Thank you! 

• Questions? 



𝜒𝜒 Matrix Examples 

ℰ(𝜌𝜌) =  � 𝜒𝜒𝑖𝑖,𝑗𝑗𝑃𝑃𝑖𝑖𝜌𝜌𝑃𝑃𝑗𝑗

4𝑛𝑛

𝑖𝑖,𝑗𝑗=1

 

Identity: 𝜒𝜒𝐼𝐼,𝐼𝐼 = 1, all other 𝜒𝜒𝑖𝑖,𝑗𝑗=0 

Hadamard: 1
2

1 1
1 −1    

𝜒𝜒𝑋𝑋,𝑋𝑋 = 𝜒𝜒𝑍𝑍,𝑋𝑋 = 𝜒𝜒𝑋𝑋,𝑍𝑍 = 𝜒𝜒𝑍𝑍,𝑍𝑍 = 1
2

, all other 𝜒𝜒𝑖𝑖,𝑗𝑗=0 
 



Easy Implementation 

Repeat each sequence a constant number of times: 

All Pauli Operations are Local! 
 
Not perfect Paulis – but we can bound the effect of these errors 

𝑖𝑖 |𝜓𝜓𝑖𝑖⟩ ℰ 𝑃𝑃 𝑏𝑏 𝑚𝑚�𝑖𝑖,𝑏𝑏 Λ𝑏𝑏 Λ𝑖𝑖 ℰ 𝑃𝑃 

ℰ 𝑃𝑃 ℰ 𝑃𝑃𝑖𝑖 𝑃𝑃𝑖𝑖† 

Random 
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