Exploring Quantum Process Characterization

Shelby Kimmel

MIT

Marcus Silva

Raytheon BBN Technologies

Quantum Device

Quantum Process Characterization

$\mathcal{E} = ?$

Write \mathcal{E} in term of Pauli operators. (*n* qubits, 4^n Pauli operations, $P_i = X \otimes Y \otimes \cdots \otimes I \otimes Z$, etc.)

$$\mathcal{E}(\rho) = \sum_{i,j=1}^{4^n} \chi_{i,j} P_i \rho P_j$$

For operation on n qubits, $16^n - 4^n$ free parameters.

Ideal Process Characterization

Flexible Input

 ${\mathcal E}$ can be anything

Large Access

Can get information about many parameters $(\chi_{i,j})$

Robust

Easy Postprocessing

Experiment outcome is a selected $\chi_{i,i}$

Easy

Scalable

Ímplementation

Procedure uses high fidelity gates= local gates

Robust Characterization

Accessing process involves preparing a state, and a measurement

Ideal Process Characterization

fidelity gates= local gates

many parameters $(\chi_{i,j})$

Ideal Process Characterization

Robust Cont.

Pauli Twirl → tractable

 4^n

$$[\mathcal{E}(\rho)]_{P} = \frac{1}{4^{n}} \sum_{i=1}^{i} P_{i}^{\dagger} \circ \mathcal{E} \circ P_{i}(\rho) \quad \text{Average over} \\ \text{conjugation with} \\ \text{all Paulis} \end{cases}$$

$$[\mathcal{E}(\rho)]_P = \sum_{i=1}^{4^n} \chi_{i,i} P_i \rho P_i$$

No off diagonal elements!

Robust Cont.

Compared to Previous Robust Protocol:

- Previous used a twirl that only preserved $\chi_{I,I}$.
- Even simpler form of \mathcal{E} , so analysis easier, but lost more information about χ matrix

Easy Implementation

To approximate the following operation,

$$i \longrightarrow \psi_i' \rightarrow P_{i1} \rightarrow \mathcal{E} \rightarrow P_{i1} \rightarrow P_{i2} \rightarrow \mathcal{E} \rightarrow P_{i2} \rightarrow \widetilde{m}_1$$

All Pauli operations are local, so can implement the above sequence with high fidelity!

Easy Implementation

Still can't implement perfectly! How do errors on Paulis effect the result?

• Instead of exact values, get bounds on χ matrix elements.

Pauli operators not unique!

 $U\{P_i\}U^{\dagger} \rightarrow \left\{\widetilde{P_i}\right\}$

Still want local operations:

$$U_1 \otimes U_2 \cdots \otimes U_n \{P_i\} U_1^{\dagger} \otimes U_2^{\dagger} \cdots \otimes U_n^{\dagger} \to \{\widetilde{P}_i\}$$
$$\{\widetilde{P}_i\} \to \{\widetilde{\chi}_i\}$$

- Pauli Twirls→Clifford Twirls
 - Can characterize all unital operations. $(\mathcal{E}(I) = I)$

Bad News

- Not Scalable/Post-Processing Hard
 - To extract single $\chi_{i,i}$ need to learn 4^n other parameters $\{\lambda_i\}$.
 - To extract a single λ_i , need to fit for a sum of decaying exponentials, a notoriously tricky (although well studied) problem.

To Do/Open Questions

- Implement!
- Get better trade offs between ease of implementation/ease of postprocessing/scalability?

Thank you!

• Questions?

$$\chi \text{ Matrix Examples}$$

$$\mathcal{E}(\rho) = \sum_{i,j=1}^{4^n} \chi_{i,j} P_i \rho P_j$$
Identity: $\chi_{I,I} = 1$, all other $\chi_{i,j} = 0$
Hadamard: $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
 $\chi_{X,X} = \chi_{Z,X} = \chi_{X,Z} = \chi_{Z,Z} = \frac{1}{2}$, all other $\chi_{i,j} = 0$

Easy Implementation

Repeat each sequence a constant number of times:

$$i \longrightarrow |\psi_i\rangle \rightarrow \Lambda_i \rightarrow [\mathcal{E}]_P \rightarrow [\mathcal{E}]_P \rightarrow \Lambda_b \rightarrow \overset{\sim}{h_b} \rightarrow \widetilde{m}_{i,b}$$
$$\rightarrow [\mathcal{E}]_P \rightarrow P_i \rightarrow \mathcal{E} \rightarrow P_i^{\dagger} \rightarrow P_i^{\dagger}$$

All Pauli Operations are Local!

Not perfect Paulis – but we can bound the effect of these errors