Quantum vs Classical Proofs

Shelby Kimmel (Middlebury College) Bill Fefferman (U. Chicago)

Proceedings of MFCS 2018 Arxiv/1510.06750

P vs NP vs BQP

NP

- I. QMA and QCMA (what? why?)
- 2. Our approach to differentiating them

• QMA (Quantum Merlin Arthur)

Arthur "I have a question – is the answer yes or no?"

e.g. Does this local Hamiltonian have a low energy state?

• QMA (Quantum Merlin Arthur)

Arthur "I have a question – is the answer yes or no?"

e.g. Does this local Hamiltonian have a low energy state?

J J

 $|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}$

 $n \sim \text{size of}$ problem

Merlin "The answer is yes. Here is a quantum state (proof) to convince you."

• QMA (Quantum Merlin Arthur)

Arthur "I have a question – is the answer yes or no?"

e.g. Does this local Hamiltonian have a low energy state?

"I don't trust Merlin, but I can use $|\phi\rangle$ as input to my quantum computer to verify he is telling the truth."

• QMA (Quantum Merlin Arthur)

Arthur "I have a question – is the answer yes or no?"

e.g. Does this local Hamiltonian have a low energy state?

QMA: Class of problems where if answer is • YES, ∃ q. state that convinces Arthur with high probability • NO, ∄ a q. state that convinces Arthur with high probability

• QCMA (Quantum Classical Merlin Arthur)

Arthur "I have a question – is the answer yes or no?"

e.g. Does this local Hamiltonian have a low energy state?

• QCMA (Quantum Classical Merlin Arthur)

Arthur "I have a question – is the answer yes or no?"

e.g. Does this local Hamiltonian have a low energy state?

Merlin "The answer is yes. Here is a **classical** state (proof) to convince you."

 $s \in \{0,1\}^n$ $n \sim size of problem$

• QCMA (Quantum Classical Merlin Arthur)

Arthur "I have a question – is the answer yes or no?"

e.g. Does this local Hamiltonian have a low energy state?

"I don't trust Merlin, but I can use *s* as input to my quantum computer to verify he is telling the truth."

• QCMA (Quantum Classical Merlin Arthur)

Arthur "I have a question – is the answer yes or no?"

e.g. Does this local Hamiltonian have a low energy state?

QCMA: Class of problems where if answer is

- YES, ∃ c. state Merlin can send that convinces Arthur with high probability
- NO, ∄ a c. state that convinces Arthur with high probability

"Does this local Hamiltonian have a low energy state?":

In QMA [Kitaev '02]

The quantum proof is just the low energy state if it exists.

Why Important

"Does this local Hamiltonian have a low energy state?":

In QMA [Kitaev '02]

The quantum proof is just the low energy state if it exists.

Not known if in QCMA

Would imply there is a classical description of low energy states of local Hamiltonians.

QMA vs QCMA

What is the relative computational power of quantum and classical states?

Show QCMA is less powerful than QMA.

(i.e. there are problems that you can verify with a quantum proof that you can't verify with a classical proof.)

Show QCMA is less powerful than QMA.

(i.e. there are problems that you can verify with a quantum proof that you can't verify with a classical proof.)

But proving this directly is HARD.

Show QCMA is less powerful than QMA.

(i.e. there are problems that you can verify with a quantum proof that you can't verify with a classical proof.)

But proving this directly is HARD.

Instead, will try to show QCMA^O is less powerful than QMA^O.

- (With an oracle)
- Less impressive, but still interesting.

In addition to the quantum computer, Arthur has a black box unitary operation O.

In addition to the quantum computer, Arthur has a black box unitary operation O.

In-place Quantum Oracle:

Let $f: \{1, 2, \dots, M\} \rightarrow \{1, 2, \dots, M\}$ be a bijective function.

Standard basis states (in-place oracle permutes states)

$$|x\rangle \rightarrow O_f \rightarrow |f(x)\rangle$$

In addition to the quantum computer, Arthur has a black box unitary operation O.

In-place Quantum Oracle:

Let $f: \{1, 2, \dots, M\} \rightarrow \{1, 2, \dots, M\}$ be a bijective function.

Standard basis states (in-place oracle permutes states)

$$|x\rangle \rightarrow O_f \rightarrow |f(x)\rangle$$

• Has classical counterpart (encodes classical function)

Previous result by Aaronson and Kuperberg ('07)` proved separation with an oracle without a classical analog.

- I. QMA and QCMA (what? why?)
- 2. Our approach to differentiating them

Intuition: Want a problem where quantum proof is a superposition of an exponentially large number of states.

Setup:

- Given oracle O_f with $f: [N^2] \to [N^2]$
- Let $S_f = \{i: f(i) \in [N]\} =$ "preimage subset"
- Is S_f mostly even? (Promised either mostly even or mostly odd)

Setup:

- Given oracle O_f with $f: [N^2] \to [N^2]$
- Let $S_f = \{i: f(i) \in [N]\} =$ "preimage subset"
- Is S_f mostly even? (Promised either mostly even or mostly odd)

This problem is in QMA^O (with an in-place oracle O_f)

Setup:

- Given oracle O_f with $f: [N^2] \to [N^2]$
- Let $S_f = \{i: f(i) \in [N]\} =$ "preimage subset"
- Is S_f mostly even? (Promised either mostly even or mostly odd)

lf "Yes"

- Merlin provides superposition of preimage subset states
- Arthur either
 - Measures in standard basis, gets even outcome with high probability.
 - Applies O_f and measures whether he got the superposition of the first N standard basis states. Succeeds with probability I.

Setup:

- Given oracle O_f with $f: [N^2] \to [N^2]$
- Let $S_f = \{i: f(i) \in [N]\} =$ "preimage subset"
- Is S_f mostly even? (Promised either mostly even or mostly odd)

lf"No":

- Merlin sends any state (on $n = \log(N^2)$ qubits)
- Arthur either
 - Measures in standard basis, gets even outcome with probability p_1 .
 - Applies O_f and measures whether he got the superposition of the first N standard basis states. Succeeds with probability p_2 .
- We show p_1 and p_2 can't both be large.

Approach to proving problem is not in QCMA^O

• A short classical proof can't contain enough information to convince Arthur about properties of a nearly structureless exponentially large subset.

Approach to proving problem is not in $\ensuremath{\mathsf{QCMA^O}}$

 Use Adversary Method to show can't efficiently distinguish YES from NO instances..

Approach to proving problem is not in $\ensuremath{\mathsf{QCMA^O}}$

- Use Adversary Method to show can't efficiently distinguish YES from NO instances.
- Merlin's proof complicates Adversary Method...

Approach to proving problem is not in QCMA^O

- Use Adversary Method to show can't efficiently distinguish YES from NO instances.
- Merlin's proof complicates Adversary Method...
- Use Pigeon Hole Principle to show one proof corresponds to a large number of permutations – by restricting to only those permutations we can ignore proof and use the Adversary Method.

Approach to proving problem is not in QCMA^O

- Use Adversary Method to show can't efficiently distinguish YES from NO instances.
- Merlin's proof complicates Adversary Method...
- Use Pigeon Hole Principle to show one proof corresponds to a large number of permutations – by restricting to only those permutations we can ignore proof and use the Adversary Method.
- Adapt Adversary Method to in-place and probabilistic oracles.

Other applications

We prove an oracle separation between QCMA and AM.

Our approach works in general for proving subset-based oracle problems, (including standard oracle problems), are not in QCMA.

Summary and Open Problems

• A quantum proof can be more powerful than a classical proof.

Summary and Open Problems

- A quantum proof can be more powerful than a classical proof.
 - Intuition: a quantum proof can contain information about an exponentially large set via superposition, while a classical prof can't.
 - Grilo, Kerenidis, Sikora '15: QMA proof can always be a subset state

Summary and Open Problems

- Remove probabilistic oracle? (Less Hard artifact of proof techniques)
- Separation without an oracle? (Extremely Hard)
- QCMA<QMA using a standard oracle? (Hard)
- Find an oracle problem where standard oracle is exponentially better than in-place (opposite is known) (Less Hard)