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How Good Can Computers Get?
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Quantum Algorithm = instructions |𝜓⟩



Outline

1. What problems have fast quantum 

algorithms?

2. Metaphorical interlude: why do quantum 

computers have an advantage?

3. When is there a provable quantum 

advantage?
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3107418240490043721350750035888567930037346022842727545720161948823206

4405180815045563468296717232867824379162728380334154710731085019195485
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= 𝑝 × 𝑞



Factoring
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16347336458092538484431338838650908598417836700330923121811108523

89333100104508151212118167511579

×

19008712816648221131268515739354139754718967899685154936666385390

88027103802104498957191261465571

=



Factoring

• Best classical algorithm: exponential in cube root of number of digits 𝑑:

~ 𝑒
3
𝑑

• Best quantum algorithm: cubic in number of digits:

~𝑑3 Shor 1997

Rubinstein 2013



Factoring

Why do we care?

 Security of modern electronic commerce relies on public-key 

cryptosystems (e.g. sharing credit care info over internet).

 Public-key cryptosystems are only safe if factoring (and similar 

problems) are difficult.

 If we build a quantum computer, we can break current cryptosystems.



Fast and Exciting Quantum Algorithms

Factoring
Quantum 

Chemistry



Quantum Chemistry

Current classical computers can only simulate molecules with less 

than ~70 electronic states.

• Number of bits scales exponentially in number of states

Quantum computers only require ~1 qubit per electronic state

• Can simulate on small quantum computers (in principle)

Poulin et al 2014,  Wecker et al  2014



Quantum Chemistry

Exist quantum algorithms for

• Thermal Rate Constant = rate of chemical reaction

• Energy structure of molecules

• Simulating solid state systems (superconductors, spin glasses, 

metamaterials)



Quantum Chemistry

Exist quantum algorithms for

• Thermal Rate Constant = rate of chemical reaction

• Energy structure of molecules

• Simulating solid state systems (superconductors, spin glasses, 

metamaterials)

Applications

• New drug development 

• New devices/technology (batteries, solar cells, better classical computers)

• Carbon capture
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Metaphor for quantum computer

• Writing algorithm is like 

engineering wave size 

and location on a beach



Metaphor for quantum algorithms



• Superposition – “can be in all states at once”

What makes quantum computers 

powerful?
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• Superposition – “can be in all states at once”

What makes quantum computers 

powerful?

• Interference



Quantum Advantage

• Interference



Quantum Advantage

• Superposition

+ interference
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Proving Quantum Advantage is Difficult!

• Best classical algorithm: exponential in cube root of number of digits 𝑑:

~ 𝑒
3
𝑑

• Best quantum algorithm: cubic in number of digits:

~𝑑3

There could be a 

better algorithm!



New Model – Functions 

• Explicit description:

𝑓 𝑥 = 2𝑥2 − 3



New Model – Functions 

• Explicit description:

𝑓 𝑥 = 2𝑥2 − 3

• Black Box description

𝑓0 → → −3

𝑓1 → → −1

𝑓𝑥 → → 𝑓(𝑥)

𝑓2 → → 5



New Model – Functions 

• Problem: Given a black box function 𝑓, does the function have property 𝑃?

• Cost: “Query Complexity” = Number of times you need to use the box

(Don’t count other operations)



New Model – Functions 

• Ex: Given black box access to 𝑓, and promised 𝑓 is quadratic or linear, 

determine which.

𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑓 𝑥 = 𝑎𝑥 + 𝑏



New Model – Functions 

• Ex: Given black box access to 𝑓, and promised 𝑓 is quadratic or linear, 

determine which.

𝑓0 → → 1

𝑓1 → → −1

𝑓3 → → 1

𝑓 𝑥

𝑥0
1

3



New Model – Functions 

• Ex: Given black box access to 𝑓, and promised 𝑓 is quadratic or linear, 

determine which.

Query Complexity = 3

𝑓0 → → 1

𝑓1 → → −1

𝑓3 → → 1

𝑓 𝑥



New Model – Functions 

• Ex: Given black box access to 𝑓, and promised 𝑓 is quadratic or linear, 

determine which.

Query Complexity = 3

𝑓0 → → 1

𝑓1 → → −1

𝑓3 → → 1

𝑓 𝑥

Only queries are counted!



Quantum Black Box

𝑓| ⟩𝑥 → → | ⟩𝑓(𝑥)
Input is quantum 

state that encodes 

input value

Output is quantum 

state that encodes 

output value

Black box is a 

unitary operation 

that encodes 𝑓



Quantum Black Box

• Problem: Given a quantum black box of 𝑓, does the function have property 𝑃?

• Cost: “Quantum Query Complexity” = Number of times you need to use the 

box 

(Free use of quantum computer, unlimited time, size)



Example: Weather Predictions

Washington Post



Query Complexity Examples

Boolean functions: 𝑥 = 1,2,3, … , 𝑛 , 𝑓 𝑥 = {0,1}

𝒙 𝒇(𝒙)

1 0

2 1

3 0

4 1

5 1

6 0



Query Complexity Examples

Boolean functions: 𝑥 = 1,2,3, … , 𝑛 , 𝑓 𝑥 = {0,1}

Property of 𝒇

Even Parity

Are there an even # 

of 1-valued outputs? 

𝒙 𝒇(𝒙)

1 0

2 1

3 0

4 1

5 1

6 0



Query Complexity Examples

Boolean functions: 𝑥 = 1,2,3, … , 𝑛 , 𝑓 𝑥 = {0,1}

Problem Quantum 

Query 

Complexity

Classical

Query 

Complexity

Even Parity

Are there an even # 

of 1-valued outputs? 

𝑛

2
𝑛

Beals et al 

1998



Query Complexity Examples

Boolean functions: 𝑥 = 1,2,3, … , 𝑛 , 𝑓 𝑥 = {0,1}

Property of 𝒇

All Zeros

Are all outputs 0-

valued? (Search)

𝒙 𝒇(𝒙)

1 0

2 1

3 0

4 1

5 1

6 0



Query Complexity Examples

Boolean functions: 𝑥 = 1,2,3, … , 𝑛 , 𝑓 𝑥 = {0,1}

Problem Quantum 

Query 

Complexity

Classical

Query 

Complexity

All Zeros

Are all outputs 0-

valued? (Search)

~ 𝑛 ~𝑛
Grover 

1997



Query Complexity Examples

More general functions with promises

𝒙 𝒇(𝒙)

1 0

2 4

3 3

4 0

5 4

6 3

Property

Period finding

Promised 𝑓 is periodic, 

find the period



Query Complexity Examples

Problem Quantum Query 

Complexity

Classical Query 

Complexity

Period finding

Promised 𝑓 is periodic, 

find the period

1 ~4 𝑛 Chakraborty 

et al 2010

More general functions with promises



Query Complexity Examples

More general functions with promises

𝒙 𝒇(𝒙)

1 3

2 1

3 1

4 6

5 5

6 2

Property

Hidden shift

Promised 𝑓 𝑥 =
𝑔(𝑥 + 𝑠) for known 

function 𝑔. Find 𝑠.

𝒙 𝒈(𝒙)

1 1

2 6

3 5

4 2

5 3

6 1



Query Complexity Examples

Problem Quantum Query 

Complexity

Classical Query 

Complexity

Hidden shift

Promised 𝑓 𝑥 =
𝑔(𝑥 + 𝑠) for known 

function 𝑔. Find 𝑠.

~log 𝑛 ~ 𝑛
Gavinsky et al 

2011

More general functions with promises



Quantum Advantage

Small Quantum Speed-

up

Large Quantum Speed-

up

No promise on function Promise on function (e.g. 

periodic, shifted function)

𝒙 𝒇(𝒙)

1 0

2 1

3 0

4 1

5 1
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Quantum Advantage

Small Quantum Speed-

up

Large Quantum Speed-

up

No promise on function Promise on function (e.g. 

periodic, shifted function)

Outcome depends on local 

property (changing one 

output changes the 

property)

Outcome depends on 

global property.

(if change one output, still 

close to desired property)



More on quantum algorithms

• http://www.scottaaronson.com/blog/?p=208 Shtetl-Optimized “Shor I’ll Do It”

http://www.scottaaronson.com/blog/?p=208

