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Familiar Problem: Phase Retrieval

Phase Retrieval: 

Learn unknown signal 𝑥 ∈ ℂ𝑑 , given noisy quadratic measurements:

𝑦𝑖 = 𝑎𝑖
∗𝑥 2 + 𝜖𝑖

Where 𝑎𝑖 ∈ ℂ𝑑 are chosen by observer, 𝜖𝑖 are unknown noise, using as few 

measurement settings as possible.
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N.B.: 

• 𝑇𝑟 𝐶i
∗𝑈 2 = vec 𝐶𝑖

∗vec 𝑈 2

• 𝐶𝑖
∗ is conjugate transpose of 𝐶𝑖



Why Phase Retrieval Using Unitaries?

• Unitaries are basic building blocks of a quantum computer

• Physical implementations often not correct – need to find errors.



How Phase Retrieval Using Unitaries?

Measurement Schemes to obtain 𝑦𝑖 = 𝑇𝑟 𝐶𝑖
∗𝑈 2 + 𝜖𝑖

1. Choi Approach
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• Difficult to prepare entangled state and measure in entangled basis

• Can’t characterize unitaries acting on full system.
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How Phase Retrieval Using Unitaries?

Measurement Schemes to obtain 𝑦𝑖 = 𝑇𝑟 𝐶𝑖
∗𝑈 2 + 𝜖𝑖

2.  Randomized Benchmarking
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• Good: inherently protected from SPAM errors, no entanglement needed

• Bad: 𝐶𝑖 must be a Clifford Unitary. 

Phase retrieval possible when 𝑪𝒊 chosen from Cliffords? 
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distribution
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Our Results:

1. Phase retrieval of all unitary matrices, when 𝐶𝑖 chosen from a 

unitary 4-design

• Use PhaseLift algorithm

• Matrix analog of vector phase retrieval result using 

vector 4-designs [Kueng, Rauhut, and Terstiege, 2014]

2. Phase retrieval works pretty well when 𝐶𝑖 chosen from a 

unitary 2-design.

• Note: no-go result for PhaseLift using vector 2-designs 

[Gross et al, 2013]

• PhaseLift is approximately correct, for most unitaries



More Details
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larger space

• Our case: lifts matrix to larger matrix, solve convex optimization 
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More Details

• PhaseLift: Lifts vector to matrix, solve convex optimization problem on 

larger space

• Our case: lifts matrix to larger matrix, solve convex optimization 

problem on larger space

𝑈 → 𝑣𝑒𝑐 𝑈 𝑣𝑒𝑐 𝑈 ∗ ∈ ℂ𝑑2×𝑑2

• Follow strategy similar to [Keung et al. 2014] for state 4-designs. 

• Key component: bounding expectation of 4th power of certain term

 For unitary 4-design, can bound using properties of 4𝑡ℎ moment 

of Haar random unitaries

 For unitary 2-design, can bound using properties of 2𝑛𝑑 moment 

of Haar random unitaries, AND non-spikiness condition.



More Details

Non-spikiness condition:

Fact:  Almost all unitary matrices are non-spiky when 𝛽 ∼ log  𝐺 !
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Summary and Conclusions

• Phase retrieval of unitary matrices

– Motivation: quantum gate tomography

– Used variant of PhaseLift algorithm

• Exact recovery using unitary 4-designs, 

approximate recovery using unitary 2-designs. 

See arXiv/1510.08887

• Outlook:

– What about 3-designs? What about Cliffords in 

particular?

– Different algorithm, e.g. Wirtinger Flow?



PhaseLift for Unitary Matrices

• Measurements 

– Where  

• Convex program



PhaseLift Using Unitary 4-Designs

• “Exact” recovery guarantee:



PhaseLift Using Unitary 2-Designs

• We will seek to recover all unitary matrices 
U that are “non-spiky” with respect to the 
measurement matrices Ci

• Fact: Almost all unitary matrices are non-
spiky, with parameter 𝛽 ~ log  𝐺



PhaseLift Using Unitary 2-Designs

• For all β-non-spiky unitary matrices U, we achieve 

“approximate” recovery, up to error δ

– Let ν = β/δ


