
Phase Retrieval Using

Unitary 2-Designs

Shelby Kimmel1,2 and Yi-Kai Liu1,3

1. Joint Center for Quantum Info and Computer Science
(QuICS), University of Maryland

2. Middlebury College

3. National Institute of Standars and Technology (NIST)

SAMPTA

04/07/2017

Familiar Problem: Phase Retrieval

Phase Retrieval:

Learn unknown signal 𝑥 ∈ ℂ𝑑 , given noisy quadratic measurements:

𝑦𝑖 = 𝑎𝑖
∗𝑥 2 + 𝜖𝑖

Where 𝑎𝑖 ∈ ℂ𝑑 are chosen by observer, 𝜖𝑖 are unknown noise, using as few

measurement settings as possible.

Variant: Phase Retrieval using Unitaries

Phase Retrieval:

Learn unknown signal 𝑥 ∈ ℂ𝑑 , given noisy quadratic measurements:

𝑦𝑖 = 𝑎𝑖
∗𝑥 2 + 𝜖𝑖

Where 𝑎𝑖 ∈ ℂ𝑑 are chosen by observer, 𝜖𝑖 are unknown noise, using as few

measurement settings as possible.

Phase Retrieval using Unitaries:

Learn unknown unitary matrix 𝑈 ∈ ℂ𝑑×𝑑 , given noisy quadratic measurements:

𝑦𝑖 = 𝑇𝑟 𝐶𝑖
∗𝑈 2 + 𝜖𝑖

Where 𝐶𝑖 ∈ ℂ𝑑×𝑑 are unitary matrices chosen by observer, 𝜖𝑖 are unknown

noise, using as few measurement settings as possible.

Variant: Phase Retrieval using Unitaries

Phase Retrieval:

Learn unknown signal 𝑥 ∈ ℂ𝑑 , given noisy quadratic measurements:

𝑦𝑖 = 𝑎𝑖
∗𝑥 2 + 𝜖𝑖

Where 𝑎𝑖 ∈ ℂ𝑑 are chosen by observer, 𝜖𝑖 are unknown noise, using as few

measurement settings as possible.

Phase Retrieval using Unitaries:

Learn unknown unitary matrix 𝑈 ∈ ℂ𝑑×𝑑 , given noisy quadratic measurements:

𝑦𝑖 = 𝑇𝑟 𝐶𝑖
∗𝑈 2 + 𝜖𝑖

Where 𝐶𝑖 ∈ ℂ𝑑×𝑑 are unitary matrices chosen by observer, 𝜖𝑖 are unknown

noise, using as few measurement settings as possible.

N.B.:

• 𝑇𝑟 𝐶i
∗𝑈 2 = vec 𝐶𝑖

∗vec 𝑈 2

• 𝐶𝑖
∗ is conjugate transpose of 𝐶𝑖

Why Phase Retrieval Using Unitaries?

• Unitaries are basic building blocks of a quantum computer

• Physical implementations often not correct – need to find errors.

How Phase Retrieval Using Unitaries?

Measurement Schemes to obtain 𝑦𝑖 = 𝑇𝑟 𝐶𝑖
∗𝑈 2 + 𝜖𝑖

1. Choi Approach

𝐶𝑖
∗𝑈

 |Φ+
Measure in

entangled

basis

𝑦𝑖 is probability of

outcome

 |Φ+

• Difficult to prepare entangled state and measure in entangled basis

• Can’t characterize unitaries acting on full system.

Maximally

entangled

state

How Phase Retrieval Using Unitaries?

Measurement Schemes to obtain 𝑦𝑖 = 𝑇𝑟 𝐶𝑖
∗𝑈 2 + 𝜖𝑖

2. Randomized Benchmarking

|𝜓 𝑈 Measure

Random Clifford

Unitary

𝑦𝑖 is probability

of outcome

 |𝜓

Recovery

Unitary

𝐷

𝐷 depends on 𝐶𝑖 and

sequence of random

unitaries

• Good: inherently protected from SPAM errors, no entanglement needed

• Bad: 𝐶𝑖 must be a Clifford Unitary.

Phase retrieval possible when 𝑪𝒊 chosen from Cliffords?

Our Results:

How does our choice of 𝑪𝒊 affect our ability to learn 𝑼?

Our Results:

How does our choice of 𝑪𝒊 affect our ability to learn 𝑼?

1. Phase retrieval of all unitary matrices, when 𝐶𝑖 chosen from a

unitary 4-design

2. Phase retrieval works pretty well when 𝐶𝑖 chosen from a

unitary 2-design.

Our Results:

How does our choice of 𝑪𝒊 affect our ability to learn 𝑼?

1. Phase retrieval of all unitary matrices, when 𝐶𝑖 chosen from a

unitary 4-design

2. Phase retrieval works pretty well when 𝐶𝑖 chosen from a

unitary 2-design.

Cliffords form a unitary 3-design! [Zhu; Webb; Kueng and Gross, 2015]

Our Results:

How does our choice of 𝑪𝒊 affect our ability to learn 𝑼?

1. Phase retrieval of all unitary matrices, when 𝐶𝑖 chosen from a

unitary 4-design

2. Phase retrieval works pretty well when 𝐶𝑖 chosen from a

unitary 2-design.

Unitary 𝑡-design is a set of unitaries that has

same 𝑡𝑡ℎ order moments as the Haar

distribution

Our Results:

1. Phase retrieval of all unitary matrices, when 𝐶𝑖 chosen from a

unitary 4-design

• Use PhaseLift algorithm

• Matrix analog of vector phase retrieval result using

vector 4-designs [Kueng, Rauhut, and Terstiege, 2014]

2. Phase retrieval works pretty well when 𝐶𝑖 chosen from a

unitary 2-design.

Our Results:

1. Phase retrieval of all unitary matrices, when 𝐶𝑖 chosen from a

unitary 4-design

• Use PhaseLift algorithm

• Matrix analog of vector phase retrieval result using

vector 4-designs [Kueng, Rauhut, and Terstiege, 2014]

2. Phase retrieval works pretty well when 𝐶𝑖 chosen from a

unitary 2-design.

• Note: no-go result for PhaseLift using vector 2-designs

[Gross et al, 2013]

• PhaseLift is approximately correct, for most unitaries

More Details

• PhaseLift: Lifts vector to matrix, solve convex optimization problem on

larger space

• Our case: lifts matrix to larger matrix, solve convex optimization

problem on larger space

𝑈 → 𝑣𝑒𝑐 𝑈 𝑣𝑒𝑐 𝑈 ∗ ∈ ℂ𝑑2×𝑑2

More Details

• PhaseLift: Lifts vector to matrix, solve convex optimization problem on

larger space

• Our case: lifts matrix to larger matrix, solve convex optimization

problem on larger space

𝑈 → 𝑣𝑒𝑐 𝑈 𝑣𝑒𝑐 𝑈 ∗ ∈ ℂ𝑑2×𝑑2

• Follow strategy similar to [Keung et al. 2014] for state 4-designs.

More Details

• PhaseLift: Lifts vector to matrix, solve convex optimization problem on

larger space

• Our case: lifts matrix to larger matrix, solve convex optimization

problem on larger space

𝑈 → 𝑣𝑒𝑐 𝑈 𝑣𝑒𝑐 𝑈 ∗ ∈ ℂ𝑑2×𝑑2

• Follow strategy similar to [Keung et al. 2014] for state 4-designs.

• Key component: bounding expectation of 4th power of certain term

 For unitary 4-design, can bound using properties of 4𝑡ℎ moment

of Haar random unitaries (using Weingarten functions and

commutative diagrams)

More Details

• PhaseLift: Lifts vector to matrix, solve convex optimization problem on

larger space

• Our case: lifts matrix to larger matrix, solve convex optimization

problem on larger space

𝑈 → 𝑣𝑒𝑐 𝑈 𝑣𝑒𝑐 𝑈 ∗ ∈ ℂ𝑑2×𝑑2

• Follow strategy similar to [Keung et al. 2014] for state 4-designs.

• Key component: bounding expectation of 4th power of certain term

 For unitary 4-design, can bound using properties of 4𝑡ℎ moment

of Haar random unitaries (using Weingarten functions and

commutative diagrams)

More Details

• PhaseLift: Lifts vector to matrix, solve convex optimization problem on

larger space

• Our case: lifts matrix to larger matrix, solve convex optimization

problem on larger space

𝑈 → 𝑣𝑒𝑐 𝑈 𝑣𝑒𝑐 𝑈 ∗ ∈ ℂ𝑑2×𝑑2

• Follow strategy similar to [Keung et al. 2014] for state 4-designs.

• Key component: bounding expectation of 4th power of certain term

 For unitary 4-design, can bound using properties of 4𝑡ℎ moment

of Haar random unitaries (using Weingarten functions and

commutative diagrams)

More Details

• PhaseLift: Lifts vector to matrix, solve convex optimization problem on

larger space

• Our case: lifts matrix to larger matrix, solve convex optimization

problem on larger space

𝑈 → 𝑣𝑒𝑐 𝑈 𝑣𝑒𝑐 𝑈 ∗ ∈ ℂ𝑑2×𝑑2

• Follow strategy similar to [Keung et al. 2014] for state 4-designs.

• Key component: bounding expectation of 4th power of certain term

 For unitary 4-design, can bound using properties of 4𝑡ℎ moment

of Haar random unitaries

 For unitary 2-design, can bound using properties of 2𝑛𝑑 moment

of Haar random unitaries, AND non-spikiness condition.

More Details

Non-spikiness condition:

Fact: Almost all unitary matrices are non-spiky when 𝛽 ∼ log 𝐺 !

What about Cliffords?

1. Phase retrieval of all unitary matrices, when 𝐶𝑖 chosen from a

unitary 4-design

2. Phase retrieval works pretty well when 𝐶𝑖 chosen from a

unitary 2-design.

Cliffords form a unitary 3-design! [Zhu; Webb; Kueng and Gross, 2015]

What about Cliffords?

Summary and Conclusions

• Phase retrieval of unitary matrices

– Motivation: quantum gate tomography

– Used variant of PhaseLift algorithm

• Exact recovery using unitary 4-designs,

approximate recovery using unitary 2-designs.

See arXiv/1510.08887

• Outlook:

– What about 3-designs? What about Cliffords in

particular?

– Different algorithm, e.g. Wirtinger Flow?

PhaseLift for Unitary Matrices

• Measurements

– Where

• Convex program

PhaseLift Using Unitary 4-Designs

• “Exact” recovery guarantee:

PhaseLift Using Unitary 2-Designs

• We will seek to recover all unitary matrices
U that are “non-spiky” with respect to the
measurement matrices Ci

• Fact: Almost all unitary matrices are non-
spiky, with parameter 𝛽 ~ log 𝐺

PhaseLift Using Unitary 2-Designs

• For all β-non-spiky unitary matrices U, we achieve

“approximate” recovery, up to error δ

– Let ν = β/δ

