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Familiar Problem: Phase Retrieval

Phase Retrieval:
Learn unknown signal x € C%, given noisy quadratic measurements:
yi = lajx|* + ¢
Where a; € C% are chosen by observer, €; are unknown noise, using as few
measurement settings as possible.
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N.B.:
¢ ITr(CU) |2 = [vec(Cy)*vec(U)?
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e (; is conjugate transpose of (;



Why Phase Retrieval Using Unitaries?

* Unitaries are basic building blocks of a quantum computer
* Physical implementations often not correct — need to find errors.




How Phase Retrieval Using Unitaries?

Measurement Schemes to obtain y; = |Tr(C;U) |* + ¢;

|. Choi Approach

*
U Ci Measure in y; is probability of
|CI)+> i) outcome .\
: basis |CD )
Maximally
entangled
state

* Difficult to prepare entangled state and measure in entangled basis
e Can’t characterize unitaries acting on full system.




How Phase Retrieval Using Unitaries?

Measurement Schemes to obtain y; = |Tr(C;U) |* + ¢;

2. Randomized Benchmarking

1Y) L — j —» Recovery | Measure
Unitary

Random Clifford D Y is probability
Unitary of outcome
D depends on C; and |l/)>
sequence of random
unitaries

* Good: inherently protected from SPAM errors, no entanglement needed
* Bad: C; must be a Clifford Unitary.

Phase retrieval possible when C; chosen from Cliffords?
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Our Results:

|.  Phase retrieval of all unitary matrices, when C; chosen from a
unitary 4-design
*  Use PhaselLift algorithm
*  Matrix analog of vector phase retrieval result using
vector 4-designs [Kueng, Rauhut, and Terstiege, 2014]

2. Phase retrieval works pretty well when C; chosen from a
unitary 2-design.
*  Note: no-go result for PhaseLift using vector 2-designs

[Gross et al, 201 3]
*  Phaselift is approximately correct, for most unitaries
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More Detalls

PhaselLift: Lifts vector to matrix, solve convex optimization problem on
larger space
Our case: lifts matrix to larger matrix, solve convex optimization
problem on larger space
U - vec(U)vec(U)* € €4 *d°
Follow strategy similar to [Keung et al. 2014] for state 4-designs.
Key component: bounding expectation of 4™ power of certain term
v’ For unitary 4-design, can bound using properties of 4" moment
of Haar random unitaries
v" For unitary 2-design, can bound using properties of
of Haar random unitaries, AND non-spikiness condition.

2% moment




More Detalls

Non-spikiness condition:

Let G be a finite set of unitary matrices in C**?. We say
that a unitary matrix U € C4*4 is non-spiky with respect to
G (with parameter 3 = 0) 1f the following holds:

tr(CTU)|?2 < 8, YC €G. (1.13)

Fact: Almost all unitary matrices are non-spiky when f ~ 10g|5|!




What about Cliffords?

|.  Phase retrieval of all unitary matrices, when C; chosen from a
unitary 4-design

Cliffords form a unitary 3-design! [Zhu;Webb; Kueng and Gross, 2015]

2. Phase retrieval works pretty well when C; chosen from a
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What about Cliffords?
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Summary and Conclusions

* Phase retrieval of unitary matrices
— Motivation: quantum gate tomography
— Used variant of PhaseLift algorithm

» Exact recovery using unitary 4-designs,
approximate recovery using unitary 2-designs.
See arXiv/1510.08887

* Qutlook:

— What about 3-designs? What about Cliffords in
particular?

— Different algorithm, e.g. Wirtinger Flow?



PhaselLift for Unitary Matrices

- Measurements  y = A(vec(U)vec(U)") +¢
— Where |
A : Cd’xd® _, pm AT) = [vec(ﬂ@‘ﬂ*f‘vec(x/ﬁ@)]

TrL
Herm :

i=1

* Convex program arg min tr(I') such that

recg x4

[AT) —yl2 < n,

[ =0,

try(I') = (I /d) tr(T),
tro(I') = (I/d) tr(I').



PhaseLift Using Unitary 4-Designs

« “Exact” recovery guarantee:

Suppose that the number of measurements satisfies
m > (64(4!)%c)” - & Ind. (L11)

Then with probability at least 1 — exp(—2m (4(4!))~") (over
the choice of the C;), we have the following uniform recovery
guarantee:

For any unitary matrix U € C9 it is the case that
any solution I',p to the convex program (1.7) with noisy
measurements (1.6) must satisfy:

|

T, —vec(U)vec(U) || p < 128(41)"n 1+ 225 ) (L12)
|| Pt iy 5
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PhaseLift Using Unitary 2-Designs

* We will seek to recover all unitary matrices
U that are "non-spiky” with respect to the
measurement matrices C,

Let G be a finite set of unitary matrices in C%*% We say

that a unitary matrix U & C9*d is non-spiky with respect to

G (with parameter 3 > 0) if the following holds:
tr(CTU)|? < B, VC € G. (1.13)

- Fact: Almost all unitary matrices are non-
spiky, with parameter g ~ log|G|




PhaseLift Using Unitary 2-Designs

* For all B-non-spiky unitary matrices U, we achieve
“approximate” recovery, up to error o

— Letv = (/0

Suppose that the number of measurements satisfies

m > (8cov?)” - d®Ind. (1.16)

Then with probability at least 1 — exp(—l—%smy_i} (over the

choice of the C;), we have the following uniform recovery
guarantee:

For any unitary matrix U € C%*? that is non-spiky with
respect to G (with parameter 53, in the sense of (1.13)), -

| Lopr — ves(U)ver:{U}T IFa

< max{ 8||vec(U ) vec(U)T ||, Lomv” 1+ = . (L.17)
{8llvee(U)vee(U)} r, 2 (1+ 25




