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• We don’t know yet (for many problems)
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Quantum Advantage
What gives quantum computers their power? 
Why is this power helpful for some problems, but not helpful for others?

• Superposition – “can be in many states at once”

• Interference – “cancel the bad, enforce the good”



Metaphor for quantum computer
• Quantum computation is 

like interaction of waves, 
islands, and shore

• I can control islands and 
shoreline

• Output of computation is 
location of a large wave
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• Some problems have structure that helps build up interference fast:

What is the period of 
a periodic function?

Period
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• Some problems have structure that helps build up interference fast:

Period Finding
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Quantum computers can find 
the period of a function 
exponentially faster than 
regular computers

Used to break cryptosystems



Quantum Advantage

• Other problems have very little structure, need more time to build up 
interference 

Parity: Even or odd number of 1’s

011010101110 (seven 1#$ → odd parity)
011010001110 (six 1#$ → even parity)
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Quantum Advantage for !"-
connectivity

More current flow (smaller effective 
resistance) → easier for quantum 
computer to solve

Less charge build-up (smaller effective 
capacitance) → easier for quantum 
computer to solve
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Unless the problem has very nice/simple structure, analyzing 
correctness and performance is very difficult
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Quantum Algorithm Designer’s Toolbox

With advent of quantum computing devices, can test!
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Challenges

Theorem 14. Let U(P, x) = (2Pker A � I)(2PH(x) � I). Fix X ✓ {0, 1}N and f : X ! {0, 1}, and let P be a span
program on {0, 1}N that decides f . Let W+( f , P) = maxx2 f�1(1) w+(x, P) and W�( f , P) = maxx2 f�1(0) w�(x, P).
Then there is a bounded error quantum algorithm that decides f by making O(

p
W+( f , P)W�( f , P)) calls to U(P, x),

and elementary gates. In particular, this algorithm has quantum query complexity O(
p

W+( f , P)W�( f , P)).

Ref. [IJ16] defines the approximate positive and negative witness sizes, w̃+(x, P) and w̃�(x, P). These are
similar to the positive and negative witness sizes, but with the conditions |wi 2 H(x) and wAPH(x) = 0
relaxed.

Definition 15 (Approximate Positive Witness). For any span program P on {0, 1}N and x 2 {0, 1}N, we define
the positive error of x in P as:

e+(x) = e+(x, P) := min
⇢���PH(x)? |wi

���
2

: A|wi = t

�
. (14)

We say |wi is an approximate positive witness for x in P if
���PH(x)? |wi

���
2
= e+(x) and A|wi = t. We define the

approximate positive witness size as

w̃+(x) = w̃+(x, P) := min
⇢
k|wik2 : A|wi = t,

���PH(x)? |wi
���

2
= e+(x)

�
. (15)

If x 2 P1, then e+(x) = 0. In that case, an approximate positive witness for x is a positive witness, and
w̃+(x) = w+(x). For negative inputs, the positive error is larger than 0.

We can define a similar notion of approximate negative witnesses (see [IJ16]).

Theorem 16 ([IJ16]). Let U(P, x) = (2Pker A � I)(2PH(x) � I). Fix X ✓ {0, 1}N and f : X ! R�0. Let P be a
span program on {0, 1}N such that for all x 2 X, f (x) = w�(x, P) and define eW+ = eW+(P) = maxx2X w̃+(x, P).

Then there exists a quantum algorithm that estimates f to accuracy e and that uses eO
✓

1
e3/2

q
w�(x) eW+

◆
calls to

U(P, x) and elementary gates.

A span program for st-connectivity An important example of a span program is one for st-connectivity,
first introduced in [KW93], and used in [BR12] to give a new quantum algorithm for st-connectivity. We state
this span program below, somewhat generalized to include weighted graphs, and to allow the input to be
specified as a subgraph of some parent graph G that is not necessarily the complete graph. We allow a string
x 2 {0, 1}N to specify a subgraph G(x) of G in a fairly general way, as described in Section 2.2. In particular,
for i 2 [N], let

�!
E i,1 ✓ �!

E (G) denote the set of (directed) edges associated with the literal xi, and
�!
E i,0 the set

of edges associated with the literal xi. Note that if (u, v, `) 2 �!
E i,b then we must also have (v, u, `) 2 �!

E i,b,
since G(x) is an undirected graph. We assume G has some implicit weighting function c.

Then we refer to the following span program as PG:

8i 2 [N], b 2 {0, 1} : Hi,b = span{|ei : e 2 �!
E i,b}

U = span{|vi : v 2 V(G)}
t = |si � |ti

8e = (u, v, `) 2 �!
E (G) : A|u, v, `i =

q
c(u, v, `)(|ui � |vi) (16)

One can check that if s and t are connected, then if |wi represents a weighted st-path or linear combination
of weighted st-paths in G(x), then |wi is a positive witness for x. Furthermore, this is the only possibility
for a positive witness, so x is a positive input for PG if and only if G(x) is st-connected, and in particular,
w+(x, PG) = 1

2 Rs,t(G(x)) [BR12]. Since the weights c(e) are positive, the set of positive inputs of PG are
independent of the choice of c, however, the witness sizes will depend on c.

10

Span program algorithm:
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Quantum Machine Code 
(sequence of simple 
quantum operations) 
(tailored for particular 
implementation)



Outlook

1. Temper your expectations…

2. Potential of quantum algorithms is just beginning to be 
explored



Questions?

Theoretical collaborators: Stacey Jeffery, Michael Jarret, Alvaro Piedrafita


