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Finding nhew quantum algorithms

* Quantum computers are almost here!!

* What are we going to do with them!?




Finding nhew quantum algorithms

* Find an important problem
o design a heuristic/provable quantum algorithm

* Better understand existing paradigms
o Learn what structure quantum algorithms can take advantage of
o Find problems that fit that structure




Outline

* Quantum Query Algorithms and Span Programs
* Structure of quantum speed-up for st-connectivity
* Applications




Quantum Query Algorithms

Quantum Oracle encodes an n-bit string x:
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Given an oracle for x, want to evaluate f(x) for f:{0,1}"* — {0,1}

Quantum query complexity of f is the number of uses of the
oracle needed by a quantum algorithm to evaluate f




Span Programs

P=(HUTtA)
* Finite dimensional inner product spaces H; @ --- @ H,,, and
{Hj,b C Hj}bE{O,l},jE[n] such that Hj,O + Hj,l = I

*  Vector space U
* Non-zero target vector T € U
* Linear operator A:H - U

Each span program encodes a function f:{0,1}"* — {0,1}
Each function f:{0,1}" — {0,1} has an infinite number of span
program representations




Span Programs

P=(HUTtA)
* Finite dimensional inner product spaces H; @ --- @ H,,, and
{Hj,b C Hj}bE{O,l},jE[n] such that Hj,O + Hj,l = I

*  Vector space U
* Non-zero target vector T € U
* Linear operator A:H - U

Connection to functions:
Vx € {0,1}" let H(x) = Hi x, P --- P Hn)xn

f(x)=1e3lw)€e Hx):Alw) =1




Span Programs

P=(HUTtA)
* Finite dimensional inner product spaces H; @ --- @ H,,, and
{Hj,b C Hj}bE{O,l},jE[n] such that Hj,O -+ Hj,l = I

*  Vector space U
* Non-zero target vector T € U
* Linear operator A:H - U

Given a span program for a function f, there is a procedure for
creating a query algorithm for f based on that span program,
where the query complexity of the algorithm depends only on the

span program.




Span Programs

P=(HUTtA)
* Finite dimensional inner product spaces H; @ --- @ H,,, and
{Hj,b C Hj}bE{O,l},jE[n] such that Hj,O + Hj,l = I

*  Vector space U
* Non-zero target vector T € U
* Linear operator A:H - U

There exists a span program that corresponds to a quantum
algorithm with optimal query complexity [Reichardt ‘09,1 I]




Span Programs

P=(HUTtA)
* Finite dimensional inner product spaces H; @ --- @ H,,, and
{Hj,b C Hj}bE{O,l},jE[n] such that Hj,O + Hj,l = I

*  Vector space U
* Non-zero target vector T € U
* Linear operator A:H - U

Better understanding of the properties of span programs leads to a
better understanding of quantum speed-ups!
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* Structure of quantum speed-up for st-connectivity
* Applications




st-connectivity

st — connectivity:
is there a path from s to t?




st-connectivity

Is there a path from s to t in a graph G?
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Span Program for st-connectivity

First described by Karchmer and Wigderson [‘93] when introduced span
programs

Used by Belovs and Reichardt ['2] to create a quantum algorithm for st-
connectivity

* H;, = span{|u,v), |v,u):{v,u} = edge i}
* Hip=0

U = span{|v):v € IV}

Alu,v) = [u) = [v)

T =|s) — [t)

Witness is a path from s to t
Ex:stouto t: A(|s,u) + |u, t)) = |s) — |u) + |u) — |[t) = |s) — [t)



Span Program Algorithm for st-
conhnectivity

Nice properties of the span program-based quantum algorithm for st-
connectivity

* Uses log-space (candidate for near term devices?) [Belovs & Reichardt ’12]
* Under mild assumptions, query complexity equals time complexity [Belovs &

Reichardt ‘12, Jeffery & K*|7]
* Now: easier than ever to analyze query complexity




Span Program Algorithm
Performance:

Query complexity of span program based st-connectivity algorithm =

0 max R, (G max C..(G
GeH :connected S’t( ) GeH :mot connected S’t( )

[Belovs, Reichard,’12] [JJKP, in progress]




Effective Resistance

1 unit of flow




Effective Resistance

1 unit of flow

Valid flow: 0 unit
e Tunitinats of flow
° Junitoutatt B S ’
« At all other nodes, zero net f unito /
II
/
/

1 unit of flow




Effective Resistance

Flow energy: 0 unit
of flow
2 (flow on edge)?
edges f unit o /’
flow /I

1 unit of flow




Effective Resistance

Flow energy: 0 unit
of flow
2 (flow on edge)?
edges f unito /’
flow /

Effective Resistance: Rg +(G)
Smallest energy of any valid flow from s
tot on G.

1 unit of flow




Effective Resistance

1 unit
resistors
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Effective Capacitance

Graph G:
S
Valid potential energy:
* lats
° QOatt

* Potential energy difference
is 0 across edge




Effective Capacitance

Graph G:

Valid potential:

* lats

* Qatt

* Potential difference is 0
across edge




Effective Capacitance

Graph G:

Cut energy:

2 (Potential Dif ference)?

edges

Effective Capacitance: Cs.(G)

Smallest cut energy of any valid potential AN
between s to t on G. /




Effective Capacitance

1 unit
S capacitors

Cs ¢(G") unit! &
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Span Program Algorithm
Performance:

Query complexity of span program based st-connectivity algorithm =

0 max R, (G max C..(G
GeH :connected S’t( ) GeH :mot connected S’t( )

[Belovs, Reichard,’12] [JJKP, in progress]
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Applications: Boolean Formulas

Method of converting Boolean formulas into st-connectivity problems
[Nissan and Ta-shma ’95, Jeffery & K*17]
Then use quantum algorithm for st-connectivity.

What is quantum complexity of deciding AND (x4, X5, ..., X)), promised
 Allx; =1,0r
* At least VN input variables are 0.




Example

What is quantum complexity of deciding if
* s andt are connected, or

* At least VN edges are missing

max R.:(G max C..(G
\/GE}[:connected S’t( )\[Geﬂ:notconnected S’t( )

| |

N 1/V/N

Quantum complexity is O(N1/%)

Randomized classical complexity is Q(Nl/z)
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Example
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New Example N
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Open Questions and Current
Directions

* There are many other problems than use st-connectivity as a
subroutine — does this improved analysis improve the complexity of
those algorithms?

* Are there other problems that reduce to st-connectivity?

* What is the classical time/query complexity of st-connectivity in the
black box model? Under the promise of small capacitance/resistance?

* Can the effective capacitance/effective resistance analysis be used to
understand speed-ups more generally?




