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Turning States Into Unitaries
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(normally e ~*ft, for H Hermitian, but
density matrices are Hermitian!)
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Question

Are global necessary or are local-sequential operations
sufficient?




Answer

Are global necessary or are local-sequential operations
sufficient?

Local are sufficient!




Outline

|. Hamiltonian simulation

2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality

3. Protocols & Applications of Sample-Based Hamiltonian
Simulation

a) Commutator and Anti-commutator simulation
b) Jordan Lie Algebra simulation
4. Fun final application




Hamiltonian Simulation

/Classical Description: \

. : _ P’
Input: H =V(x)+ -

 Cost:  time, gates

* Method: e.g. Trotter-Suzuki

\_ /

@ack Box Description:

* Cost: uses of box

* Method: (sparse) Low, Chuang
u Berry, Childs, Kothari,

~

e § . non-zero elements
put. of it" row of H

/




Sample-Based Hamiltonian Simulation

6ensity Matrix Description: \

Input: H=p

Cost: copies of p

\_ /




Sample-Based Hamiltonian Simulation

6ensity Matrix Description: \

Input: H=p PP R g, t, 6)
Cost: n, (copies of p)
Output: e~ WPlgelPt to error § in trace distance

\_ /




Sample-Based Hamiltonian Simulation

Input:
Cost:

Output:

\_

6ensity Matrix Description:

H=p (p®n®0-; L é‘)
n, (copies of p)
e Ptgelpt to error & in trace distance

~

/

* Most famous application: if p is mixed but has low rank, can
produce pure state which is eigenvector of p. (LMR [4)




Outline

|. Hamiltonian simulation
LMR (Lloyd, Mohseni, Rebentrost ‘14) Protocol & Optimality
. Protocols & Applications of Sample-Based Hamiltonian
Simulation
a) Sum of states simulation
b) Commutator simulation
c) Lie Algebra simulation
4. Fun final application
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LMR Protocol

Partial SWAP: €5 = cos(e)l — isin(e) S

S = SWAP
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LMR Protocol

Partial SWAP: €5 = cos(e)l — isin(e) S

S = SWAP
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LMR Protocol




LMR Protocol

tTB[e_iES(O'A® pB)eieS] — e lPEFplPE 0(62)




LMR Protocol

trg|e "5 (0,® pp)e'cS| = e PegePt + 0(e?)

€ = §/t,repeat t?/8 times: e~ Plge'Pt + 0(8)




LMR Protocol

trg|e "5 (0,® pp)e'cS| = e PegePt + 0(e?)

€ = §/t,repeat t?/8 times: e~ Plge'Pt + 0(8)

Uses O(t?/68) samples




LMR Seems Too Simple

* Could we do better using global op!?
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LMR Seems Too Simple

* Could we do better using global op!?

mmro

* E.g, near optimal tomography of p requires global operation (I,2)

|. Haahetal, 2015
2.  O’Donnell,Wright 2015



LMR Seems Too Simple

* Could we do better using global op!?

L]

* How about tomography?! Get estimate p of p, then implement H = p
o Worse Scaling!
» Tomography scales with dimension and rank of p
» For constant dimension, scaling with precision is worse by
square root factor!




LMR Seems Too Simple

* Change tactics: instead of trying to improve on LMR by
using global operations, can we prove LMR is optimal!




Lower Bound Sketch

l. Proof by Contradiction:

Task:

Task requires n samples

If could do sample-based Hamiltonian simulation better than LMR,
could do task with fewer than n samples



Lower Bound Sketch

l. Proof by Contradiction:

1/2

0 1/2+€ 0
: s
0 1/2] or [ 0 E],Wlth probability = 2/3

Task: Decide if p is [ 1/2 —

Task requires n samples of p:n = () (eiZ) (Bound uses trace distance)

If could do sample-based Hamiltonian simulation better than LMR,
could do task with fewer than n samples



Lower Bound Sketch

l. Proof by Contradiction:

1/2

0] [1/2+e 0
o 1/2]1°"| o

1/2 — E],with probability = 2/3

Task: Decide if p is [

Task requires n samples of p:n = () (eiZ) (Bound uses trace distance)

[ when pis max. mixed

. exp[—l,Dt] - {Z when p1s not max. mixed and t = %

If could do sample-based Hamiltonian simulation for time ¢ and
accuracy 1/3 with fewer than 0(t%) samples — contradiction



Lower Bound Sketch

Let f(t,5) be the number of samples required to simulate H = p for time t to
accuracy § using an optimal protocol.

Part| = f (t, %) — Q(t2)
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Let f(t,5) be the number of samples required to simulate H = p for time ¢ to
accuracy § using an optimal protocol.

Part| = f (t, %) — Q(t2)

ll. Concatenation

Suppose can simulate H = p for time T to accuracy 6
Then can simulate H = p for time mt to accuracy mé by repeating m € Z*

times
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Suppose can simulate H = p for time T to accuracy 6
Then can simulate H = p for time mt to accuracy mé by repeating m € Z*

times:

f(mt,mé) < mf(t,o)




Lower Bound Sketch

Let f(t,5) be the number of samples required to simulate H = p for time ¢ to
accuracy § using an optimal protocol.

Part| = f (t, %) — Q(t2)

ll. Concatenation

Suppose can simulate H = p for time T to accuracy 6
Then can simulate H = p for time mt to accuracy mé by repeating m € Z*

times:
f(mt,mé) < mf(t,o)

4 \

mé can be 1/3 0 can be small!

f(t,6) = Q(t%/9)
I



Lower Bound Sketch

Proof sketch used mixed states, but using similar ideas, can prove also optimal
for pure states.




Application of Lower Bound

State-based Grover Search:

Given:

[W)|b @ 1) if |y) € S, for S a subspace of C2"

n Os S.t. 05|1/J>|b> ~ 7 |¢)|b) otherwise

—

= Sample access to an unknown state |¢)

Decide: Is overlap of |¢p) with S zero or A, promised one is the case, using
as few copies of |¢) possible.




Application of Lower Bound

State-based Grover Search:

1

Normally: O (ﬁ

) uses of Og

In our case: We show require () G) copies of |¢p)

Why:

* In Grover’s algorithm, need to reflect about |¢), but given only
sample access to |¢), this is difficult!

* Can use Hamiltonian simulation, but not very efficient.




Application of Lower Bound

State-based Grover Search:

Given:

[W)|b @ 1) if |y) € S, for S a subspace of C2"

n Os S.t. 05|1/J>|b> ~ 7 |¢)|b) otherwise

—

= Sample access to an unknown state |¢)

Decide: Is overlap of |¢p) with S zero or A, promised one is the case, using
as few copies of |¢) possible.




Outline

|. Hamiltonian simulation
2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
Protocols & Applications of Sample-Based Hamiltonian
Simulation
a) Useful tools
i.  Split Simulation Tool
ii. Addition Tool
b) Sum of states simulation
c) Commutator & Anti-commutator simulation
d) Jordan-Lie Algebra simulation
4. Fun final application




Split Simulation

Suppose can prepare the state
p'=[0X0| & p4 + [IN1] & p-

Where p., p_ Z 0 are subnormalized states, but p, + p_ is a normalized
state. Then can simulate

H=py—p-
2
for time ¢, accuracy 6, using O (%) copies of p’
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Where p., p_ Z 0 are subnormalized states, but p, + p_ is a normalized
state. Then can simulate

H=py—p-
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for time ¢, accuracy 6, using O (%) copies of p’

* ldea: Apply unitary
00] ® e™™¢ + [1N(1| ® e™*




Split Simulation

Suppose can prepare the state
p'=[0X0| & p4 + [IN1] & p-

Where p., p_ Z 0 are subnormalized states, but p, + p_ is a normalized
state. Then can simulate

H=py—p-
2
for time ¢, accuracy 6, using O (%) copies of p’

* Idea: Apply unitary
00] ® e™™¢ + [1N(1| ® e™*
to state

(10X0]| ®@ ps + 11| @ p-) @ 0

then discard first qubit



Addition tool

If have sample access to p; and p,, then can create by sampling

pp1 + (1 —p)p;

Can easily simulate H = pp; + (1 — p)p,, even if p;, p, don’t
commute




Sum of States Simulation

Given: 01, P2, -, P and a4, a,, ...,a; € R

Simulate: H = ),;a;p; for time t,error §




Sum of States Simulation

Given: 01, P2, -, P and a4, a,, ...,a; € R

Simulate: H = ),;a;p; for time t,error §

« Sample p; with prob. |a;|/a, where a = }.; |a;|
» if a; > 0 append |0)(0],if a; < 0 append |1)(1]|:

1 1
001 ®= D api + 11X ®= ) lalpy

i:a;>0 1:a;<0




Sum of States Simulation

Given: 01, P2, -, P and a4, a,, ...,a; € R

Simulate: H = ),;a;p; for time t,error §

« Sample p; with prob. |a;|/a, where a = }.; |a;|
» if a; > 0 append |0)(0],if a; < 0 append |1)(1]|:

1 1
001 ®= D api + 11X ®= ) lalpy

i:a;>0 1:a;<0

L : 1 1
* Then use split simulation: H = a (Zzl’:ai>0 a;p; — ;Zi:aiq) |ai|pi)

Requires 0(a?t?/5) samples, p; sampled O(|a;j|at?/§) times on average



Commutator/Anti-commutator Simulation

Given: 01, P2

Simulate: H =i[p4,p,] or H = {p4, p,} for time t, error 6




Commutator/Anti-commutator Simulation

Lioy+2 )

V2 V2
P1
P2

¢ Claim output of circuit is:

10)(0] ® p4+ + |11 @ p_

where

1, |
P+ = p- =5 (e pips + 7P papy)



Commutator/Anti-commutator Simulation

Given: 01, P2

Simulate: H =i[p4,p,] or H = {p4, p,} for time t, error 6

Uses 0(t*/8) samples




Applications of Commutator Simulation

« State Addition:

el lb2)211t 5 3 rotation of the 2-D subspace
spanned by [y,) and |y,).* Can rotate |,) to

alpq) + Bl2).

* Orthogonality Testing:

Commutator of two orthogonal states is 0. Commutator
simulation gives optimal strategy to test orthogonality
(square root improvement over swap test).

* For (Yqlpp) =24 #0
I



Jordan-Lie Algebra Simulation

Given: 01, P2, ) Pk

Simulate: H=e%pipy..00+e " Pprpr—i...p1




Jordan-Lie Algebra Simulation

1 10) el®
—|0) + —|1
NG ﬁl )
P1
P2 — -
S ‘ S55(1-2,2-3..k->1)
Pk — =

1. |
ps = p- =5 (e p1ps . pic + €7 pic . p2p1)
I



Jordan-Lie Algebra Simulation

Given: 01, P2, ) Pk

Simulate: H=e%pipy..00+e " Pprpr—i...p1

Uses O (kt?/5) samples




Jordan-Lie Algebra Simulation

Given: 01, P2, ) Pk

Simulate: H=Y;a;(%pjipj2 i + e Pipjpji—-1-Pj1)




Jordan-Lie Algebra Simulation

Given: 01, P2, -, Px,and a, as, ..., ar € R

Simulate: H = Zj aj(ei‘/’fp,,lpr2 Py T e_i‘/’fprljl,DrU-l_1 o Pry)

Uses O(La?t?/5) samples total

* L = max|jy|
J

‘ a=2j|aj|




Fun Side-bar: Universal Model of QC

 Fact 1:

Partial SWAP (Heisenberg exchange) + single qubit gates are
universal for quantum computing. (3] (In particular, arbitrary single
gubit X and Z rotations).

* Fact 2:
— e Pt with p = |+)(+| give arbitrary X rotations
— e~ Pt with p = |0)(0]| give arbitrary Z rotations

 Consequence:

Heisenberg exchange plus source of |[+) and |0) states is universal
for quantum computing (with polynomial overhead.)

* [3] Boyer, Brassard, Hoyer + ‘98
I



Open Questions

1. Is Multi-State Hamiltonian simulation
optimal?

2. Is general Jordan Lie algebra simulation
optimal?

3. Copyright protection?

4. Other applications?




