Turning States into Unitaries: Optimal Sample-Based Hamiltonian Simulation

Shelby Kimmel

Cedric Lin (QuICS)
Guang Hao Low (MIT)
Maris Ozols (Cambridge)
Ted Yoder (MIT)

(normally e^{-iHt} , for H Hermitian, but density matrices are Hermitian!)

Question

Are global necessary or are local-sequential operations sufficient?

Answer

Are global necessary or are local-sequential operations sufficient?

Local are sufficient!

Outline

- I. Hamiltonian simulation
- 2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
- Protocols & Applications of Sample-Based Hamiltonian Simulation
 - a) Commutator and Anti-commutator simulation
 - b) Jordan Lie Algebra simulation
- 4. Fun final application

Hamiltonian Simulation

Classical Description:

- Input: $H = V(x) + \frac{\hat{p}^2}{2m}$
- Cost: time, gates
- Method: e.g. Trotter-Suzuki

Black Box Description:

- Input: $i \rightarrow \longrightarrow \text{non-zero elements}$ of i^{th} row of H
- Cost: uses of box
- Method: (sparse) Low, Chuang/ Berry, Childs, Kothari,

Sample-Based Hamiltonian Simulation

Density Matrix Description:

Input: $H = \rho$

Cost: copies of ρ

Sample-Based Hamiltonian Simulation

Density Matrix Description:

Input: $H = \rho \qquad (\rho^{\otimes n} \otimes \sigma, \ t, \ \delta)$

Cost: n, (copies of ρ)

Output: $e^{-i\rho t}\sigma e^{i\rho t}$ to error δ in trace distance

Sample-Based Hamiltonian Simulation

Density Matrix Description:

Input: $H = \rho \qquad (\rho^{\otimes n} \otimes \sigma, \ t, \ \delta)$

Cost: n, (copies of ρ)

Output: $e^{-i\rho t}\sigma e^{i\rho t}$ to error δ in trace distance

• Most famous application: if ρ is mixed but has low rank, can produce pure state which is eigenvector of ρ . (LMR 14)

Outline

- I. Hamiltonian simulation
- 2. LMR (Lloyd, Mohseni, Rebentrost '14) Protocol & Optimality
- 3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 - a) Sum of states simulation
 - b) Commutator simulation
 - c) Lie Algebra simulation
- 4. Fun final application

ho source

σ

Partial SWAP:
$$e^{i\epsilon S} = \cos(\epsilon)\mathbb{I} - i\sin(\epsilon)S$$

$$S = SWAP$$

Partial SWAP:
$$e^{i\epsilon S} = \cos(\epsilon)\mathbb{I} - i\sin(\epsilon)S$$

$$S = SWAP$$

$$tr_B[e^{-i\epsilon S}(\sigma_A \otimes \rho_B)e^{i\epsilon S}] = e^{-i\rho\epsilon}\sigma e^{i\rho\epsilon} + O(\epsilon^2)$$

$$tr_B[e^{-i\epsilon S}(\sigma_A \otimes \rho_B)e^{i\epsilon S}] = e^{-i\rho\epsilon}\sigma e^{i\rho\epsilon} + O(\epsilon^2)$$

$$\epsilon = \delta/t$$
, repeat t^2/δ times: $e^{-i\rho t}\sigma e^{i\rho t} + O(\delta)$

$$tr_B[e^{-i\epsilon S}(\sigma_A \otimes \rho_B)e^{i\epsilon S}] = e^{-i\rho\epsilon}\sigma e^{i\rho\epsilon} + O(\epsilon^2)$$

$$\epsilon = \delta/t$$
, repeat t^2/δ times: $e^{-i\rho t}\sigma e^{i\rho t} + O(\delta)$

Uses $O(t^2/\delta)$ samples

Could we do better using global op? source ho

Could we do better using global op?

ho source

• E.g, near optimal tomography of ρ requires global operation (1,2)

- I. Haah et al., 2015
- 2. O'Donnell, Wright 2015

Could we do better using global op?

- How about tomography? Get estimate $\tilde{\rho}$ of ρ , then implement $H=\tilde{\rho}$
 - Worse Scaling!
 - \succ Tomography scales with dimension and rank of ho
 - For constant dimension, scaling with precision is worse by square root factor!

• Change tactics: instead of trying to improve on LMR by using global operations, can we prove LMR is optimal!

I. Proof by Contradiction:

Task:

Task requires n samples

If could do sample-based Hamiltonian simulation better than LMR, could do task with fewer than n samples

I. Proof by Contradiction:

Task: Decide if
$$\rho$$
 is $\begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$ or $\begin{bmatrix} 1/2 + \epsilon & 0 \\ 0 & 1/2 - \epsilon \end{bmatrix}$, with probability $\geq 2/3$

Task requires n samples of ρ : $n = \Omega\left(\frac{1}{\epsilon^2}\right)$. (Bound uses trace distance)

If could do sample-based Hamiltonian simulation better than LMR, could do task with fewer than n samples

I. Proof by Contradiction:

Task: Decide if
$$\rho$$
 is $\begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$ or $\begin{bmatrix} 1/2 + \epsilon & 0 \\ 0 & 1/2 - \epsilon \end{bmatrix}$, with probability $\geq 2/3$

Task requires n samples of ρ : $n = \Omega\left(\frac{1}{\epsilon^2}\right)$. (Bound uses trace distance)

•
$$\exp[-i\rho t] = \begin{cases} \mathbb{I} \text{ when } \rho \text{ is max. mixed} \\ \mathbb{Z} \text{ when } \rho \text{ is not max. mixed and } t = \frac{\pi}{2\epsilon} \end{cases}$$

If could do sample-based Hamiltonian simulation for time t and accuracy 1/3 with fewer than $O(t^2)$ samples \rightarrow contradiction

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I
$$\Rightarrow$$
 $f\left(t, \frac{1}{3}\right) = \Omega(t^2)$

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I
$$\Rightarrow$$
 $f\left(t, \frac{1}{3}\right) = \Omega(t^2)$

II. Concatenation

Suppose can simulate $H=\rho$ for time τ to accuracy δ Then can simulate $H=\rho$ for time $m\tau$ to accuracy $m\delta$ by repeating $m\in\mathbb{Z}^+$ times

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I
$$\Rightarrow$$
 $f\left(t, \frac{1}{3}\right) = \Omega(t^2)$

II. Concatenation

Suppose can simulate $H=\rho$ for time τ to accuracy δ Then can simulate $H=\rho$ for time $m\tau$ to accuracy $m\delta$ by repeating $m\in\mathbb{Z}^+$ times:

$$f(mt, m\delta) \le mf(t, \delta)$$

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I
$$\Rightarrow$$
 $f\left(t, \frac{1}{3}\right) = \Omega(t^2)$

II. Concatenation

Suppose can simulate $H=\rho$ for time τ to accuracy δ Then can simulate $H=\rho$ for time $m\tau$ to accuracy $m\delta$ by repeating $m\in\mathbb{Z}^+$ times:

$$f(mt, m\delta) \le mf(t, \delta)$$

 $m\delta$ can be 1/3

 δ can be small!

$$f(t,\delta) = \Omega(t^2/\delta)$$

Proof sketch used mixed states, but using similar ideas, can prove also optimal for pure states.

Application of Lower Bound

State-based Grover Search:

Given:

•
$$O_S$$
 s.t. $O_S |\psi\rangle|b\rangle = \left\{ egin{array}{l} |\psi\rangle|b\oplus 1\rangle & \mbox{if } |\psi\rangle\in S \mbox{, for } S \mbox{ a subspace of } \mathbb{C}^{2^n} \\ |\psi\rangle|b\rangle & \mbox{otherwise} \end{array} \right.$

• Sample access to an unknown state $|\phi\rangle$

Decide: Is overlap of $|\phi\rangle$ with S zero or λ , promised one is the case, using as few copies of $|\phi\rangle$ possible.

Application of Lower Bound

State-based Grover Search:

Normally: $O\left(\frac{1}{\sqrt{\lambda}}\right)$ uses of O_S

In our case: We show require $\Omega\left(\frac{1}{\lambda}\right)$ copies of $|\phi\rangle$

Why:

- In Grover's algorithm, need to reflect about $|\phi\rangle$, but given only sample access to $|\phi\rangle$, this is difficult!
- Can use Hamiltonian simulation, but not very efficient.

Application of Lower Bound

State-based Grover Search:

Given:

•
$$O_S$$
 s.t. $O_S |\psi\rangle|b\rangle = \left\{ egin{array}{l} |\psi\rangle|b\oplus 1\rangle & \mbox{if } |\psi\rangle\in S \mbox{, for } S \mbox{ a subspace of } \mathbb{C}^{2^n} \\ |\psi\rangle|b\rangle & \mbox{otherwise} \end{array} \right.$

• Sample access to an unknown state $|\phi\rangle$

Decide: Is overlap of $|\phi\rangle$ with S zero or λ , promised one is the case, using as few copies of $|\phi\rangle$ possible.

Outline

- I. Hamiltonian simulation
- 2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
- 3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 - a) Useful tools
 - Split Simulation Tool
 - ii. Addition Tool
 - b) Sum of states simulation
 - c) Commutator & Anti-commutator simulation
 - d) Jordan-Lie Algebra simulation
- 4. Fun final application

Split Simulation

Suppose can prepare the state

$$\rho' = |0\rangle\langle 0| \otimes \rho_+ + |1\rangle\langle 1| \otimes \rho_-$$

Where $\rho_+, \rho_- \gtrsim 0$ are subnormalized states, but $\rho_+ + \rho_-$ is a normalized state. Then can simulate

$$H=\rho_+-\rho_-$$
 for time t , accuracy δ , using $O\left(\frac{t^2}{\delta}\right)$ copies of ρ '

Split Simulation

Suppose can prepare the state

$$\rho' = |0\rangle\langle 0| \otimes \rho_+ + |1\rangle\langle 1| \otimes \rho_-$$

Where $\rho_+, \rho_- \gtrsim 0$ are subnormalized states, but $\rho_+ + \rho_-$ is a normalized state. Then can simulate

$$H=\rho_+-\rho_-$$
 for time t , accuracy δ , using $O\left(\frac{t^2}{\delta}\right)$ copies of ρ '

Idea: Apply unitary

$$|0\rangle\langle 0| \otimes e^{-iS\epsilon} + |1\rangle\langle 1| \otimes e^{iS\epsilon}$$

Split Simulation

Suppose can prepare the state

$$\rho' = |0\rangle\langle 0| \otimes \rho_+ + |1\rangle\langle 1| \otimes \rho_-$$

Where $\rho_+, \rho_- \gtrsim 0$ are subnormalized states, but $\rho_+ + \rho_-$ is a normalized state. Then can simulate

$$H=\rho_+-\rho_-$$
 for time t , accuracy δ , using $O\left(\frac{t^2}{\delta}\right)$ copies of ρ '

Idea: Apply unitary

$$|0\rangle\langle 0| \otimes e^{-iS\epsilon} + |1\rangle\langle 1| \otimes e^{iS\epsilon}$$

to state

$$(|0\rangle\langle 0|\otimes \rho_{+}+|1\rangle\langle 1|\otimes \rho_{-})\otimes \sigma$$

then discard first qubit

Addition tool

If have sample access to ρ_1 and ρ_2 , then can create by sampling

$$p\rho_1 + (1-p)\rho_2$$

Can easily simulate $H=p\rho_1+(1-p)\rho_2$, even if ρ_1 , ρ_2 don't commute

Sum of States Simulation

Given: $\rho_1, \rho_2, \dots, \rho_k$ and $a_1, a_2, \dots, a_k \in \mathbb{R}$

Simulate: $H = \sum_{i} a_{i} \rho_{i}$ for time t, error δ

Sum of States Simulation

Given: $\rho_1, \rho_2, \dots, \rho_k$ and $a_1, a_2, \dots, a_k \in \mathbb{R}$

Simulate: $H = \sum_{i} a_{i} \rho_{i}$ for time t, error δ

• Sample ρ_i with prob. $|a_i|/a$, where $a = \sum_i |a_i|$ • if $a_i > 0$ append $|0\rangle\langle 0|$, if $a_i < 0$ append $|1\rangle\langle 1|$:

$$|0\rangle\langle 0| \otimes \frac{1}{a} \sum_{i:a_i>0} a_i \rho_i + |1\rangle\langle 1| \otimes \frac{1}{a} \sum_{i:a_i<0} |a_i| \rho_i$$

Sum of States Simulation

Given:
$$\rho_1, \rho_2, \dots, \rho_k$$
 and $a_1, a_2, \dots, a_k \in \mathbb{R}$

Simulate:
$$H = \sum_{i} a_{i} \rho_{i}$$
 for time t , error δ

• Sample ρ_i with prob. $|a_i|/a$, where $a = \sum_i |a_i|$ • if $a_i > 0$ append $|0\rangle\langle 0|$, if $a_i < 0$ append $|1\rangle\langle 1|$:

$$|0\rangle\langle 0| \otimes \frac{1}{a} \sum_{i:a_i>0} a_i \rho_i + |1\rangle\langle 1| \otimes \frac{1}{a} \sum_{i:a_i<0} |a_i| \rho_i$$

• Then use split simulation: $H = a\left(\frac{1}{a}\sum_{i:a_i>0}a_i\rho_i - \frac{1}{a}\sum_{i:a_i<0}|a_i|\rho_i\right)$

Requires $O(a^2t^2/\delta)$ samples, ρ_j sampled $O(|a_j|at^2/\delta)$ times on average

Commutator/Anti-commutator Simulation

Given: ρ_1, ρ_2

Simulate: $H=i[\rho_1,\rho_2] \text{ or } H=\{\rho_1,\rho_2\} \text{ for time } t, \text{ error } \delta$

Commutator/Anti-commutator Simulation

$$\frac{1}{\sqrt{2}}|0\rangle + \frac{e^{i\phi}}{\sqrt{2}}|1\rangle$$

$$\rho_1$$

$$\rho_2$$

Claim output of circuit is:

$$|0\rangle\langle 0|\otimes \rho_{+}+|1\rangle\langle 1|\otimes \rho_{-}$$

where

$$\rho_{+} - \rho_{-} = \frac{1}{2} \left(e^{i\phi} \rho_{1} \rho_{2} + e^{-i\phi} \rho_{2} \rho_{1} \right)$$

Commutator/Anti-commutator Simulation

Given: ρ_1, ρ_2

Simulate: $H = i[\rho_1, \rho_2]$ or $H = \{\rho_1, \rho_2\}$ for time t, error δ

Uses $O(t^2/\delta)$ samples

Applications of Commutator Simulation

State Addition:

 $e^{[|\psi_1\rangle\langle\psi_1|,|\psi_2\rangle\langle\psi_2|]t}$ is a rotation of the 2-D subspace spanned by $|\psi_1\rangle$ and $|\psi_2\rangle$.* Can rotate $|\psi_1\rangle$ to $\alpha|\psi_1\rangle + \beta|\psi_2\rangle$.

Orthogonality Testing:

Commutator of two orthogonal states is 0. Commutator simulation gives optimal strategy to test orthogonality (square root improvement over swap test).

Given: $\rho_1, \rho_2, \dots, \rho_k$

Simulate: $H = e^{i\phi} \rho_1 \rho_2 \dots \rho_k + e^{-i\phi} \rho_k \rho_{k-1} \dots \rho_1$

$$\frac{1}{\sqrt{2}}|0\rangle + \frac{e^{i\phi}}{\sqrt{2}}|1\rangle$$

$$\rho_1$$

$$\rho_2$$

$$\vdots$$

$$S: (1 \rightarrow 2, 2 \rightarrow 3 \dots k \rightarrow 1)$$

$$\rho_k$$

$$\rho_{+} - \rho_{-} = \frac{1}{2} \left(e^{i\phi} \rho_{1} \rho_{2} \dots \rho_{k} + e^{-i\phi} \rho_{k} \dots \rho_{2} \rho_{1} \right)$$

Given: $\rho_1, \rho_2, \dots, \rho_k$

Simulate: $H = e^{i\phi} \rho_1 \rho_2 \dots \rho_k + e^{-i\phi} \rho_k \rho_{k-1} \dots \rho_1$

Uses $O(kt^2/\delta)$ samples

Given: $\rho_1, \rho_2, \dots, \rho_k$

Simulate: $H = \sum_{j} a_{j} (e^{i\phi_{j}} \rho_{j1} \rho_{j2} ... \rho_{jk} + e^{-i\phi_{j}} \rho_{jk} \rho_{jk-1} ... \rho_{j1})$

Given: $\rho_1, \rho_2, \dots, \rho_k$, and $a_1, a_2, \dots, a_k \in \mathbb{R}$

Simulate: $H = \sum_{j} a_{j} (e^{i\phi_{j}} \rho_{r_{1}} \rho_{r_{2}} \dots \rho_{r_{|j|}} + e^{-i\phi_{j}} \rho_{r_{|j|}} \rho_{r_{|j|-1}} \dots \rho_{r_{1}})$

Uses $O(La^2t^2/\delta)$ samples total

- $L = \max_{j} |j_k|$
- $a = \sum_{j} |a_j|$

Fun Side-bar: Universal Model of QC

Fact 1:

Partial SWAP (Heisenberg exchange) + single qubit gates are universal for quantum computing. [3] (In particular, arbitrary single qubit X and Z rotations).

Fact 2:

- $e^{-i\rho t}$ with $\rho = |+\rangle\langle +|$ give arbitrary X rotations
- $e^{-i\rho t}$ with $\rho = |0\rangle\langle 0|$ give arbitrary Z rotations

Consequence:

Heisenberg exchange plus source of $|+\rangle$ and $|0\rangle$ states is universal for quantum computing (with polynomial overhead.)

Open Questions

- 1. Is Multi-State Hamiltonian simulation optimal?
- 2. Is general Jordan Lie algebra simulation optimal?
- 3. Copyright protection?
- 4. Other applications?