Turning States into Unitaries: Optimal Sample-Based Hamiltonian Simulation

Shelby Kimmel

Cedric Lin (QuICS) Guang Hao Low (MIT) Maris Ozols (Cambridge) Ted Yoder (MIT)

density matrices are Hermitian!)

Are global necessary or are local-sequential operations sufficient?

Are global necessary or are local-sequential operations sufficient?

Local are sufficient!

Outline

- I. Hamiltonian simulation
- 2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
- 3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 - a) Sum of states simulation
 - b) Commutator simulation
 - c) Lie Algebra simulation
- 4. Fun final application

Outline

- I. Hamiltonian simulation
- 2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
- 3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 - a) Sum of states simulation
 - b) Commutator simulation
 - c) Lie Algebra simulation
- 4. Fun final application

Hamiltonian Simulation

Classical Description:

• Input:
$$H = V(x) + \frac{\hat{p}^2}{2m}$$

- Cost: time, gates
- Method: e.g. Trotter-Suzuki

Sample-Based Hamiltonian Simulation

Density Matrix Description:

Input: $H = \rho$

Cost: copies of ρ

Sample-Based Hamiltonian Simulation

Outline

- I. Hamiltonian simulation
- 2. LMR (Lloyd, Mohseni, Rebentrost '14) Protocol & Optimality
- 3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 - a) Sum of states simulation
 - b) Commutator simulation
 - c) Lie Algebra simulation
- 4. Fun final application

 $\widetilde{\sigma}$

$$tr_B\left[e^{-i\epsilon S}(\sigma_A \otimes \rho_B)e^{i\epsilon S}\right] = e^{-i\rho\epsilon}\sigma e^{i\rho\epsilon} + O(\epsilon^2)$$

$$tr_B\left[e^{-i\epsilon S}(\sigma_A \otimes \rho_B)e^{i\epsilon S}\right] = e^{-i\rho\epsilon}\sigma e^{i\rho\epsilon} + O(\epsilon^2)$$

 $\epsilon = \delta/t$, repeat t^2/δ times: $e^{-i\rho t}\sigma e^{i\rho t} + O(\delta)$

$$tr_B\left[e^{-i\epsilon S}(\sigma_A \otimes \rho_B)e^{i\epsilon S}\right] = e^{-i\rho\epsilon}\sigma e^{i\rho\epsilon} + O(\epsilon^2)$$

 $\epsilon = \delta/t$, repeat t^2/δ times: $e^{-i\rho t}\sigma e^{i\rho t} + O(\delta)$

Uses $O(t^2/\delta)$ samples

$$tr_B\left[e^{-i\epsilon S}(\sigma_A \otimes \rho_B)e^{i\epsilon S}\right] = e^{-i\rho\epsilon}\sigma e^{i\rho\epsilon} + O(\epsilon^2)$$

 $\epsilon = \delta/t$, repeat t^2/δ times: $e^{-i\rho t}\sigma e^{i\rho t} + O(\delta)$

Uses $O(t^2/\delta)$ samples

LMR Application: Quantum Machine Learning

$$tr_B\left[e^{-i\epsilon S}(\sigma_A \otimes \rho_B)e^{i\epsilon S}\right] = e^{-i\rho\epsilon}\sigma e^{i\rho\epsilon} + O(\epsilon^2)$$

 $\epsilon = \delta/t$, repeat t^2/δ times: $e^{-i\rho t}\sigma e^{i\rho t} + O(\delta)$

Uses $O(t^2/\delta)$ samples

- LMR Application: Quantum Machine Learning
 - Generate quantum descriptions of eigenstates of low rank density matrices (modulo errors in protocol that we can fix)

LMR Seems Too Simple Could we do better using global op? ۲ ρ ρ $\boldsymbol{\sigma}$ source

• E.g, near optimal tomography of ρ requires global operation (1,2)

Haah et al., 2015
 O'Donnell, Wright 2015

- How about tomography? Get estimate $\tilde{\rho}$ of ρ , then implement $H = \tilde{\rho}$
 - Worse Scaling!
 - \blacktriangleright Tomography scales with dimension and rank of ρ
 - For constant dimension, scaling with precision is worse by square root factor!

• Change tactics: instead of trying to improve on LMR by using global operations, can we prove LMR is optimal!

I. Proof by Contradiction:

Task:

Task requires n samples

If could do sample-based Hamiltonian simulation better than LMR, could do task with fewer than n samples

I. Proof by Contradiction:

Task: Decide if ρ is $\begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$ or $\begin{bmatrix} 1/2 + \epsilon & 0 \\ 0 & 1/2 - \epsilon \end{bmatrix}$, with probability $\geq 2/3$ Task requires n samples of ρ : $n = \Omega\left(\frac{1}{\epsilon^2}\right)$. (Bound uses trace distance)

If could do sample-based Hamiltonian simulation better than LMR, could do task with fewer than n samples

I. Proof by Contradiction:

Task: Decide if ρ is $\begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$ or $\begin{bmatrix} 1/2 + \epsilon & 0 \\ 0 & 1/2 - \epsilon \end{bmatrix}$, with probability $\geq 2/3$ Task requires n samples of ρ : $n = \Omega\left(\frac{1}{\epsilon^2}\right)$. (Bound uses trace distance)

•
$$\exp[-i\rho t] = \begin{cases} \mathbb{I} \text{ when } \rho \text{ is max. mixed} \\ \mathbb{Z} \text{ when } \rho \text{ is not max. mixed and } t = \frac{\pi}{2\epsilon} \end{cases}$$

If could do sample-based Hamiltonian simulation for time t and accuracy 1/3 with fewer than $O(t^2)$ samples \rightarrow contradiction

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I
$$\Rightarrow$$
 $f\left(t,\frac{1}{3}\right) = \Omega(t^2)$

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I
$$\Rightarrow f\left(t, \frac{1}{3}\right) = \Omega(t^2)$$

II. Concatenation

If can simulate $H = \rho$ for time τ to accuracy δ Then can simulate $H = \rho$ for time $m\tau$ to accuracy $m\delta$ by repeating $m \in \mathbb{Z}^+$ times:

 $f(mt, m\delta) \le mf(t, \delta)$

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I
$$\Rightarrow f\left(t, \frac{1}{3}\right) = \Omega(t^2)$$

II. Concatenation

If can simulate $H = \rho$ for time τ to accuracy δ

Then can simulate $H = \rho$ for time $m\tau$ to accuracy $m\delta$ by repeating $m \in \mathbb{Z}^+$ times:

Proof sketch used mixed states, but using similar ideas, can prove also optimal for pure states.

Application of Lower Bound

State-based Grover Search:

Given:

•
$$O_S \text{ s.t. } O_S |\psi\rangle |b\rangle = \begin{cases} |\psi\rangle |b \oplus 1\rangle \text{ if } |\psi\rangle \in S, \text{ for } S \text{ a subspace of } \mathbb{C}^{2^n} \\ |\psi\rangle |b\rangle \text{ otherwise} \end{cases}$$

• Sample access to an unknown state $|\phi
angle$

Decide: Is overlap of $|\phi\rangle$ with S zero or λ , promised one is the case, using as few copies of $|\phi\rangle$ possible.

Application of Lower Bound

State-based Grover Search:

Normally: $O\left(\frac{1}{\sqrt{\lambda}}\right)$ uses of O_S

In our case: We show require $\Omega\left(\frac{1}{\lambda}\right)$ copies of $|\phi\rangle$

Why:

- In Grover's algorithm, need to reflect about $|\phi\rangle$, but given only sample access to $|\phi\rangle$, this is difficult!
- Can use Hamiltonian simulation, but not very efficient.

Application of Lower Bound

State-based Grover Search:

Given:

•
$$O_S \text{ s.t. } O_S |\psi\rangle |b\rangle = \begin{cases} |\psi\rangle |b \oplus 1\rangle \text{ if } |\psi\rangle \in S, \text{ for } S \text{ a subspace of } \mathbb{C}^{2^n} \\ |\psi\rangle |b\rangle \text{ otherwise} \end{cases}$$

• Sample access to an unknown state $|\phi
angle$

Decide: Is overlap of $|\phi\rangle$ with S zero or λ , promised one is the case, using as few copies of $|\phi\rangle$ possible.

Outline

- I. Hamiltonian simulation
- 2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
- 3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 - a) Sum of states simulation
 - b) Commutator simulation
 - c) Lie Algebra simulation
- 4. Fun final application

Sum of States Simulation

Given:	$\rho_1, \rho_2, \dots, \rho_k$ and $a_1, a_2, \dots, a_k \in \mathbb{R}$
Simulate:	$H = \sum_{i} a_{i} \rho_{i}$

Sum of States Simulation

Given:	$\rho_1, \rho_2, \dots, \rho_k$ and $a_1, a_2, \dots, a_k \in \mathbb{R}$
Simulate:	$H = \sum_{i} a_{i} \rho_{i}$

Given:	$\rho_1^{\otimes n_1} \otimes \cdots \otimes \rho_k^{\otimes n_k} \otimes \sigma_k$	$\sigma~(ho_i,\sigma~{ m arbitrary~states})$
Create:	$e^{-iHt}\sigma e^{-iHt}$	(to error δ in trace distance)

Sum of States Simulation

Given:	$\rho_1, \rho_2, \dots, \rho_k$ and $a_1, a_2, \dots, a_k \in \mathbb{R}$
Simulate:	$H = \sum_{i} a_{i} \rho_{i}$

Given:	$\rho_1^{\otimes n_1} \otimes \cdots \otimes \rho_k^{\otimes n_k} \otimes \sigma$	($ ho_i$, σ arbitrary states)
Create:	$e^{-iHt}\sigma e^{-iHt}$	(to error δ in trace distance)

Our Protocol: uses
$$n_j = O\left(\frac{|a_j|at^2}{\delta}\right)$$
, where $a = \sum_i |a_i|$

Commutator Simulation

Given:	$ ho_1, ho_2$
Simulate:	$H = i[\rho_1, \rho_2]$

Given:	$\rho_1^{\otimes n} \otimes \rho_2^{\otimes n} \otimes \sigma$	($ ho$, σ arbitrary states)
Create:	$e^{[ho_1, ho_2]t}\sigma e^{[ho_1, ho_2]t}$	(to error δ in trace distance)

Commutator Simulation

Commutator Simulation

$$i[\rho_1, \rho_2] = 2 \rho_{12} - \rho_1 - \rho_2$$

- Use Sum of State Simulation!
- Uses $O\left(\frac{t^2}{\delta}\right)$ copies each of ρ_1 and ρ_2
- Can prove optimal using similar approach as before

Applications of Commutator Simulation

• State Addition:

 $e^{[|\psi_1\rangle\langle\psi_1|,|\psi_2\rangle\langle\psi_2|]t}$ is a rotation of the 2-D subspace spanned by $|\psi_1\rangle$ and $|\psi_2\rangle$.* Can rotate $|\psi_1\rangle$ to $\alpha|\psi_1\rangle + \beta|\psi_2\rangle$.

Orthogonality Testing:

Commutator of two orthogonal states is 0. Commutator simulation gives optimal strategy to test orthogonality (square root improvement over swap test).

* For
$$\langle \psi_1 | \psi_2 \rangle = \lambda \neq 0$$

Lie Algebra Simulation

Given:	$\rho_1, \rho_2, \dots, \rho_k$
Simulate:	Any element of Lie algebra generated by $\{\rho_1, \rho_2, \dots, \rho_k\}$
	That is, any linear combination of nested commutators of $\rho_1, \rho_2, \dots, \rho_k$, e.g. $H = \rho_1 + [\rho_2, [\rho_3, \rho_5]]$

Our Protocol: exponential samples in # of ρ_i in a single term

• Idea: use $\pi/4$ swaps to create states with nested commutator components, then use state addition simulation to get rid of unwanted terms.

Fun Side-bar: Universal Model of QC

• Fact 1:

Partial SWAP (Heisenberg exchange) + single qubit gates are universal for quantum computing. [3] (In particular, arbitrary single qubit X and Z rotations).

• Fact 2:

- $e^{-i\rho t}$ with $\rho = |+\rangle\langle +|$ give arbitrary X rotations
- $e^{-i\rho t}$ with $\rho = |0\rangle\langle 0|$ give arbitrary Z rotations

Consequence:

Heisenberg exchange plus source of $|+\rangle$ and $|0\rangle$ states is universal for quantum computing (with polynomial overhead.)

• [3] Boyer, Brassard, Hoyer + '98

Open Questions

- 1. Is Multi-State Hamiltonian simulation optimal?
- 2. Is general Lie algebra simulation optimal?
- 3. Copyright protection?
- 4. Other applications?