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Hamiltonian Simulation

Classical Description: Black Box Description:

non-zero elements 

of 𝑖𝑡ℎ row of 𝐻
𝑖 → →

• Input:      𝐻 = 𝑉 𝑥 +
 𝑝2

2𝑚

• Input:

• Cost: time, gates

• Method: e.g. Trotter-Suzuki 

• Cost: uses of box

• Method: (sparse) Low, Chuang 

/ Berry, Childs, Kothari, 
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Density Matrix Description:
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Sample-Based Hamiltonian Simulation

Density Matrix Description:

Input: 𝐻 = 𝜌 (𝜌⊗𝑛 ⊗ 𝜎, 𝑡)

Cost: copies of 𝜌

Output: 𝑒−𝑖𝜌𝑡𝜎𝑒𝑖𝜌𝑡 (to error 𝛿 in trace distance)
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1. Hamiltonian simulation

2. LMR (Lloyd, Mohseni, Rebentrost ‘14) Protocol & Optimality

3. Protocols & Applications of Sample-Based Hamiltonian 

Simulation

a) Sum of states simulation

b) Commutator simulation

c) Lie Algebra simulation

4. Fun final application
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𝜖 = 𝛿/𝑡, repeat 𝑡2/𝛿 times: 𝑒−𝑖𝜌𝑡𝜎𝑒𝑖𝜌𝑡 + 𝑂(𝛿)

Uses 𝑂(𝑡2/𝛿) samples

• LMR Application: Quantum Machine Learning

• Generate quantum descriptions of eigenstates of low rank density 

matrices (modulo errors in protocol that we can fix)
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𝜎𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
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source

• E.g, near optimal tomography of 𝜌 requires global operation (1,2)

1. Haah et al., 2015

2. O’Donnell, Wright 2015



LMR Seems Too Simple

• Could we do better using global op?

𝜎𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
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source

• How about tomography? Get estimate  𝜌 of 𝜌, then implement 𝐻 =  𝜌
o Worse Scaling!

 Tomography scales with dimension and rank of 𝜌
 For constant dimension, scaling with precision is worse by 

square root factor!



LMR Seems Too Simple

• Change tactics: instead of trying to improve on LMR by 

using global operations, can we prove LMR is optimal! 
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Lower Bound Sketch

I. Proof by Contradiction:

Task: Decide if 𝜌 is 
1/2 0
0 1/2

or 
1/2 + 𝜖 0

0 1/2 − 𝜖
, with probability ≥ 2/3

Task requires 𝑛 samples of 𝜌: 𝑛 = Ω
1

𝜖2 . (Bound uses trace distance)

• exp −𝑖𝜌𝑡 =  
𝕀 when ρ is max. mixed

Z when ρ is not max. mixed and 𝑡 =
𝜋

2𝜖

If could do sample-based Hamiltonian simulation for time 𝑡 and 

accuracy 1/3 with fewer than 𝑂 𝑡2 samples → contradiction
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Let 𝑓(𝑡, 𝛿) be the number of samples required to simulate 𝐻 = 𝜌 for time 𝑡 to 

accuracy 𝛿 using an optimal protocol.

Part I ⇒ 𝑓 𝑡,
1

3
= Ω 𝑡2

II. Concatenation

If can simulate 𝐻 = 𝜌 for time 𝜏 to accuracy 𝛿
Then can simulate 𝐻 = 𝜌 for time 𝑚𝜏 to accuracy 𝑚𝛿 by repeating 𝑚 ∈ ℤ+

times:

𝑓(𝑚𝑡,𝑚𝛿) ≤ 𝑚𝑓 𝑡, 𝛿

𝑚𝛿 can be 1/3 𝛿 can be small!

𝑓 𝑡, 𝛿 = Ω(𝑡2/𝛿)



Lower Bound Sketch

Proof sketch used mixed states, but using similar ideas, can prove also optimal 

for pure states.



Application of Lower Bound

State-based Grover Search:

 𝑂𝑆 s.t. 𝑂𝑆 𝜓 𝑏 =
𝜓 𝑏 ⊕ 1 if 𝜓 ∈ 𝑆, for 𝑆 a subspace of ℂ2𝑛

𝜓 𝑏 otherwise

Given:

 Sample access to an unknown state |𝜙⟩

Decide:   Is overlap of |𝜙⟩ with 𝑆 zero or 𝜆, promised one is the case, using 

as few copies of 𝜙 possible. 



Application of Lower Bound

State-based Grover Search:

Normally: 𝑂
1

𝜆
uses of 𝑂𝑆

In our case:  We show require Ω
1

𝜆
copies of |𝜙⟩

Why: 

• In Grover’s algorithm, need to reflect about |𝜙⟩, but given only 

sample access to 𝜙 , this is difficult! 

• Can use Hamiltonian simulation, but not very efficient.
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Given: 𝜌1, 𝜌2, … , 𝜌𝑘 and 𝑎1, 𝑎2, … , 𝑎𝑘 ∈ ℝ

Simulate: 𝐻 =  𝑖 𝑎𝑖𝜌𝑖

Given: 𝜌1
⊗𝑛1 ⊗ ⋯⊗ 𝜌𝑘

⊗𝑛𝑘 ⊗ 𝜎 (𝜌𝑖 , 𝜎 arbitrary states)

Create: 𝑒−𝑖𝐻 𝑡𝜎𝑒−𝑖𝐻 𝑡 (to error 𝛿 in trace distance)

Our Protocol: uses 𝑛𝑗 = 𝑂
𝑎𝑗 𝑎𝑡2

𝛿
, where 𝑎 =  𝑖 |𝑎𝑖|



Commutator Simulation

Given: 𝜌1, 𝜌2

Simulate: 𝐻 = 𝑖[𝜌1, 𝜌2]

Given: 𝜌1
⊗𝑛 ⊗ 𝜌2

⊗𝑛 ⊗ 𝜎 (𝜌, 𝜎 arbitrary states)

Create: 𝑒[𝜌1,𝜌2]𝑡𝜎𝑒[𝜌1,𝜌2]𝑡 (to error 𝛿 in trace distance)



Commutator Simulation

𝜌1
source

𝜌2
source

𝜌1

𝜌2

𝑒−𝑖𝑆𝜋/4

1

2
( 𝜌1 + 𝜌2 + 𝑖[𝜌1, 𝜌2])

𝜌12



Commutator Simulation

𝜌12 𝜌1 𝜌22 − −𝑖 𝜌1, 𝜌2 =

• Use Sum of State Simulation!

• Uses 𝑂
𝑡2

𝛿
copies each of 𝜌1 and 𝜌2

• Can prove optimal using similar approach as before



Applications of Commutator Simulation

• State Addition: 

𝑒[|𝜓1⟩⟨𝜓1|, 𝜓2 ⟨𝜓2|]𝑡 is a rotation of the 2-D subspace 

spanned by |𝜓1⟩ and 𝜓2 .* Can rotate |𝜓1⟩ to 

𝛼 𝜓1 + 𝛽|𝜓2⟩.

• Orthogonality Testing: 

Commutator of two orthogonal states is 0. Commutator 

simulation gives optimal strategy to test orthogonality 

(square root improvement over swap test).

* For 𝜓1 𝜓2 = 𝜆 ≠ 0



Lie Algebra Simulation

Given: 𝜌1, 𝜌2, … , 𝜌𝑘

Simulate: Any element of Lie algebra generated by 

𝜌1, 𝜌2, … , 𝜌𝑘

That is, any linear combination of nested commutators 

of 𝜌1, 𝜌2, … , 𝜌𝑘, e.g. 𝐻 = 𝜌1 + [𝜌2, 𝜌3, 𝜌5 ]

Our Protocol: exponential samples in # of 𝜌𝑖 in a single term

• Idea: use 𝜋/4 swaps to create states with nested commutator 

components, then use state addition simulation to get rid of unwanted 

terms.



Fun Side-bar: Universal Model of QC

• Fact 1:

Partial SWAP (Heisenberg exchange) + single qubit gates are 

universal for quantum computing. [3] (In particular, arbitrary single 

qubit X and Z rotations).

• Fact 2:

– 𝑒−𝑖𝜌𝑡 with 𝜌 = |+⟩⟨+| give arbitrary X rotations

– 𝑒−𝑖𝜌𝑡 with 𝜌 = |0⟩⟨0| give arbitrary Z rotations

• Consequence:

Heisenberg exchange plus source of |+⟩ and 0 states is universal 

for quantum computing (with polynomial overhead.)

• [3] Boyer, Brassard, Hoyer + ‘98



Open Questions

1. Is Multi-State Hamiltonian simulation 

optimal?

2. Is general Lie algebra simulation optimal?

3. Copyright protection?

4. Other applications?


