Turning States into Unitaries: Optimal Sample-Based Hamiltonian Simulation

Shelby Kimmel

Cedric Lin (QuICS) Guang Hao Low (MIT) Maris Ozols (Cambridge) Ted Yoder (MIT)

Are global necessary or are local-sequential operations sufficient?

Are global necessary or are local-sequential operations sufficient?

Local are sufficient!

Are global necessary or are local-sequential operations sufficient?

Local are sufficient!

Applications:

- Quantum software
- Tomographic applications (e.g. anti-swap test)
- Decomposing mixed state into component pure states

Outline

- I. Hamiltonian simulation
- 2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
- 3. Protocols & Applications of Sample-Based Hamiltonian Simulation

Hamiltonian Simulation

Classical Description:

• Input:
$$H = V(x) + \frac{\hat{p}^2}{2m}$$

- Cost: time, gates
- Method: e.g. Trotter-Suzuki

Sample-Based Hamiltonian Simulation

Density Matri	x Description:		
Input:	Quantum states:	$\rho^{\otimes n} \otimes \sigma$, Parameters: $t, \ \delta \in \mathbb{R}$	
Cost:	n, (copies of $ ho$)		
Output:	$e^{-i\rho t}\sigma e^{i\rho t}$	to error δ in trace distance	

Outline

- I. Hamiltonian simulation
- 2. LMR (Lloyd, Mohseni, Rebentrost '14) Protocol & Optimality
- 3. Protocols & Applications of Sample-Based Hamiltonian Simulation

LMR Protocol

$$tr_B\left[e^{-i\epsilon S}(\sigma_A \otimes \rho_B)e^{i\epsilon S}\right] = e^{-i\rho\epsilon}\sigma e^{i\rho\epsilon} + O(\epsilon^2)$$

LMR Protocol

$$tr_B\left[e^{-i\epsilon S}(\sigma_A \otimes \rho_B)e^{i\epsilon S}\right] = e^{-i\rho\epsilon}\sigma e^{i\rho\epsilon} + O(\epsilon^2)$$

 $\epsilon = \delta/t$, repeat t^2/δ times: $e^{-i\rho t}\sigma e^{i\rho t} + O(\delta)$

LMR Protocol

$$tr_B[e^{-i\epsilon S}(\sigma_A \otimes \rho_B)e^{i\epsilon S}] = e^{-i\rho\epsilon}\sigma e^{i\rho\epsilon} + O(\epsilon^2)$$

 $\epsilon = \delta/t$, repeat t^2/δ times: $e^{-i\rho t}\sigma e^{i\rho t} + O(\delta)$

Uses $O(t^2/\delta)$ samples

LMR Seems Too Simple Could we do better using global op? lacksquareρ ρ σ source

• E.g, near optimal tomography of ρ requires global operation (1,2)

Haah et al., 2015
 O'Donnell, Wright 2015

- Suppose use tomography to get estimate $\tilde{\rho}$ of ρ , then implement $H = \tilde{\rho}$
 - Worse Scaling!
 - For Tomography scales with dimension and rank of ρ
 - For constant dimension, scaling with precision is worse by square root factor!

• Change tactics: instead of trying to improve on LMR by using global operations, can we prove LMR is optimal!

I. Proof by Contradiction:

Task:

Task requires n samples

If could do sample-based Hamiltonian simulation better than LMR, could do task with fewer than n samples

I. Proof by Contradiction:

Task: Decide if ρ is $\begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$ or $\begin{bmatrix} 1/2 + \epsilon & 0 \\ 0 & 1/2 - \epsilon \end{bmatrix}$, with probability $\geq 2/3$ Task requires n samples of ρ : $n = \Omega\left(\frac{1}{\epsilon^2}\right)$. (Bound uses trace distance)

If could do sample-based Hamiltonian simulation better than LMR, could do task with fewer than n samples

I. Proof by Contradiction:

Task: Decide if ρ is $\begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$ or $\begin{bmatrix} 1/2 + \epsilon & 0 \\ 0 & 1/2 - \epsilon \end{bmatrix}$, with probability $\geq 2/3$ Task requires n samples of ρ : $n = \Omega\left(\frac{1}{\epsilon^2}\right)$. (Bound uses trace distance)

•
$$\exp[-i\rho t] = \begin{cases} \mathbb{I} \text{ when } \rho \text{ is max. mixed} \\ \mathbb{Z} \text{ when } \rho \text{ is not max. mixed and } t = \frac{\pi}{2\epsilon} \end{cases}$$

If could do sample-based Hamiltonian simulation for time t and accuracy 1/3 with fewer than $\Omega(t^2)$ samples \rightarrow contradiction

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I
$$\Rightarrow$$
 $f\left(t,\frac{1}{3}\right) = \Omega(t^2)$

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I
$$\Rightarrow f\left(t, \frac{1}{3}\right) = \Omega(t^2)$$

II. Concatenation

Suppose can simulate $H = \rho$ for time τ to accuracy δ Then can simulate $H = \rho$ for time $m\tau$ to accuracy $m\delta$ by repeating $m \in \mathbb{Z}^+$ times

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I
$$\Rightarrow f\left(t, \frac{1}{3}\right) = \Omega(t^2)$$

II. Concatenation

Suppose can simulate $H = \rho$ for time τ to accuracy δ Then can simulate $H = \rho$ for time $m\tau$ to accuracy $m\delta$ by repeating $m \in \mathbb{Z}^+$ times:

 $f(m\tau, m\delta) \le mf(\tau, \delta)$

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I
$$\Rightarrow f\left(t, \frac{1}{3}\right) = \Omega(t^2)$$

II. Concatenation

Suppose can simulate $H = \rho$ for time τ to accuracy δ Then can simulate $H = \rho$ for time $m\tau$ to accuracy $m\delta$ by repeating $m \in \mathbb{Z}^+$ times:

$$f(m\tau, m\delta) \le mf(\tau, \delta)$$

$$m\delta \text{ can be I/3}$$

$$\delta \text{ can be small!}$$

$$f(t, \delta) = \Omega(t^2/\delta)$$

Proof sketch used mixed states, but using similar ideas, can prove also optimal for pure states.

Application of Lower Bound Technique

State-based Grover Search:

Given:

•
$$O_S \text{ s.t. } O_S |\psi\rangle |b\rangle = \begin{cases} |\psi\rangle |b \oplus 1\rangle \text{ if } |\psi\rangle \in S, \text{ for } S \text{ a subspace of } \mathbb{C}^{2^n} \\ |\psi\rangle |b\rangle \text{ otherwise} \end{cases}$$

• Sample access to an unknown state $|\phi
angle$

Decide: Is overlap of $|\phi\rangle$ with S zero or λ , promised one is the case, using as few copies of $|\phi\rangle$ possible.

Application of Lower Bound Technique

State-based Grover Search:

Normally: $O\left(\frac{1}{\sqrt{\lambda}}\right)$ uses of O_S

In our case: We show require $\Omega\left(\frac{1}{\lambda}\right)$ copies of $|\phi\rangle$

Why:

- In Grover's algorithm, need to reflect about $|\phi\rangle$, but given only sample access to $|\phi\rangle$, this is difficult!
- Can use Hamiltonian simulation, but not very efficient.

Outline

- I. Hamiltonian simulation
- 2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
- 3. Protocols & Applications of Sample-Based Hamiltonian Simulation

Split Simulation

Suppose can prepare the state

$$\rho' = |0\rangle \langle 0| \otimes \rho_+ + |1\rangle \langle 1| \otimes \rho_-$$

Where $\rho_+, \rho_- \gtrsim 0$ are subnormalized states, but $\rho_+ + \rho_-$ is a normalized state. Then can simulate

 $H = \rho_{+} - \rho_{-}$ for time *t*, accuracy δ , using $O\left(\frac{t^{2}}{\delta}\right)$ copies of ρ'

Split Simulation

Suppose can prepare the state

$$\rho' = |0\rangle \langle 0| \otimes \rho_+ + |1\rangle \langle 1| \otimes \rho_-$$

Where $\rho_+, \rho_- \gtrsim 0$ are subnormalized states, but $\rho_+ + \rho_-$ is a normalized state. Then can simulate

 $H = \rho_{+} - \rho_{-}$
for time t, accuracy δ , using $O\left(\frac{t^{2}}{\delta}\right)$ copies of ρ '

• Idea: Apply unitary

 $|0\rangle\langle 0|\otimes e^{-iS\epsilon}+|1\rangle\langle 1|\otimes e^{iS\epsilon}$

Split Simulation

Suppose can prepare the state

$$\rho' = |0\rangle \langle 0| \otimes \rho_+ + |1\rangle \langle 1| \otimes \rho_-$$

Where $\rho_+, \rho_- \gtrsim 0$ are subnormalized states, but $\rho_+ + \rho_-$ is a normalized state. Then can simulate

 $H = \rho_{+} - \rho_{-}$
for time t, accuracy δ , using $O\left(\frac{t^{2}}{\delta}\right)$ copies of ρ '

• Idea: Apply unitary

 $|0\rangle\langle 0|\otimes e^{-iS\epsilon}+|1\rangle\langle 1|\otimes e^{iS\epsilon}$

to state

 $(|0\rangle\langle 0|\otimes \rho_++|1\rangle\langle 1|\otimes \rho_-)\otimes \sigma$

then discard system

Commutator/Anti-commutator Simulation

Given:	$ ho_1, ho_2$
Simulate:	$H = i[\rho_1, \rho_2]$ or $H = \{\rho_1, \rho_2\}$ for time $t, \operatorname{error} \delta$

Commutator/Anti-commutator Simulation

• Claim output of circuit is:

$$|0\rangle\langle 0|\otimes \rho_{+}+|1\rangle\langle 1|\otimes \rho_{-}$$

where

$$\rho_{+} - \rho_{-} = \frac{1}{2} \left(e^{i\phi} \rho_{1} \rho_{2} + e^{-i\phi} \rho_{2} \rho_{1} \right)$$

Commutator/Anti-commutator Simulation

Given:	$ ho_1, ho_2$
Simulate:	$H=i[ho_1, ho_2]$ or $H=\{ ho_1, ho_2\}$ for time $t,$ error δ

Uses $\Theta(t^2/\delta)$ samples

Applications of Commutator Simulation

• State Addition:

 $e^{[|\psi_1\rangle\langle\psi_1|,|\psi_2\rangle\langle\psi_2|]t}$ is a rotation of the 2-D subspace spanned by $|\psi_1\rangle$ and $|\psi_2\rangle$.* Can rotate $|\psi_1\rangle$ to $\alpha|\psi_1\rangle + \beta|\psi_2\rangle$.

Orthogonality Testing:

Commutator of two orthogonal states is 0. Commutator simulation gives optimal strategy to test orthogonality (square root improvement over swap test).

* For
$$\langle \psi_1 | \psi_2 \rangle = \lambda \neq 0$$

Given:	$\rho_1, \rho_2, \dots, \rho_k$
Simulate:	$H = e^{i\phi}\rho_1\rho_2\dots\rho_k + e^{-i\phi}\rho_k\rho_{k-1}\dots\rho_1$

$$\rho_{+} - \rho_{-} = \frac{1}{2} \left(e^{i\phi} \rho_{1} \rho_{2} \dots \rho_{k} + e^{-i\phi} \rho_{k} \dots \rho_{2} \rho_{1} \right)$$

Given:	$\rho_1, \rho_2, \dots, \rho_k$, and $a_1, a_2, \dots, a_k \in \mathbb{R}$
Simulate:	$H = \sum_{j} a_{j} (e^{i\phi_{j}} \rho_{r_{1}} \rho_{r_{2}} \dots \rho_{r_{ j }} + e^{-i\phi_{j}} \rho_{r_{ j }} \rho_{r_{ j -1}} \dots \rho_{r_{1}})$

Given:	$\rho_1, \rho_2, \dots, \rho_k$, and $a_1, a_2, \dots, a_k \in \mathbb{R}$
Simulate:	$H = \sum_{j} a_{j} (e^{i\phi_{j}} \rho_{r_{1}} \rho_{r_{2}} \dots \rho_{r_{ j }} + e^{-i\phi_{j}} \rho_{r_{ j }} \rho_{r_{ j -1}} \dots \rho_{r_{1}})$

Uses $O(La^2t^2/\delta)$ samples total

•
$$L = \max_{j} |j_k|$$

• $a = \sum_{j} |a_j|$

Final application: Universal Model of QC

• Fact 1:

Partial SWAP (Heisenberg exchange) + single qubit gates are universal for quantum computing. [3] (In particular, arbitrary single qubit X and Z rotations).

• Fact 2:

- $e^{-i\rho t}$ with $\rho = |+\rangle\langle +|$ give arbitrary X rotations
- $e^{-i\rho t}$ with $\rho = |0\rangle\langle 0|$ give arbitrary Z rotations

Consequence:

Heisenberg exchange plus source of $|+\rangle$ and $|0\rangle$ states is universal for quantum computing (with polynomial overhead.)

• [3] Boyer, Brassard, Hoyer + '98

Open Questions

- 1. Is general Jordan Lie algebra simulation optimal?
- 2. Copyright protection?
- 3. Other applications?