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Question 

Are global necessary or are local-sequential operations 
sufficient? 
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Answer 

Are global necessary or are local-sequential operations 
sufficient? 
 
Local are sufficient! 
 
Applications: 
• Quantum software 
• Tomographic applications (e.g. anti-swap test) 
• Decomposing mixed state into component pure states 
 
 



Outline 

1. Hamiltonian simulation 
2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality 
3. Protocols & Applications of Sample-Based Hamiltonian 

Simulation 



Hamiltonian Simulation 

Classical Description: Black Box Description: 

non-zero elements 
of 𝑖𝑖𝑡𝑡𝑡 row of 𝐻𝐻 

𝑖𝑖 →  →  • Input:      𝐻𝐻 = 𝑉𝑉 𝑥𝑥 + 𝑝𝑝�2

2𝑚𝑚
 • Input: 

• Cost:      time, gates  

• Method:  e.g. Trotter-Suzuki 
  

• Cost: uses of box  

• Method: (sparse) Low, Chuang 
/ Berry, Childs, Kothari,   



Sample-Based Hamiltonian Simulation 

Density Matrix Description: 
 
 
Input:   Quantum states: 𝜌𝜌⊗𝑛𝑛 ⊗ 𝜎𝜎, Parameters: 𝑡𝑡, 𝛿𝛿 ∈ ℝ 
 
Cost:  𝑛𝑛, (copies of 𝜌𝜌) 
 
Output:  𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 to error 𝛿𝛿 in trace distance 
 
 



Outline 

1. Hamiltonian simulation 
2. LMR (Lloyd, Mohseni, Rebentrost ‘14) Protocol & Optimality 
3. Protocols & Applications of Sample-Based Hamiltonian 

Simulation 
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𝑆𝑆 = SWAP 

Partial SWAP: 
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• E.g, near optimal tomography of 𝜌𝜌 requires global operation (1,2) 

1. Haah et al., 2015 
2. O’Donnell, Wright 2015 
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• Suppose use tomography to get estimate 𝜌𝜌� of 𝜌𝜌, then implement 𝐻𝐻 = 𝜌𝜌� 
o Worse Scaling! 

 Tomography scales with dimension and rank of 𝜌𝜌 
 For constant dimension, scaling with precision is worse by 

square root factor! 



LMR Seems Too Simple 

• Change tactics: instead of trying to improve on LMR by 
using global operations, can we prove LMR is optimal!  



Lower Bound Sketch 

I. Proof by Contradiction: 
 
 

Task: 
 
 

Task requires 𝑛𝑛 samples 

If could do sample-based Hamiltonian simulation better than LMR, 
could do task with fewer than 𝑛𝑛 samples 
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• exp −𝑖𝑖𝑖𝑖𝑖𝑖 = �
𝕀𝕀 when ρ is max. mixed

Z when ρ is not max. mixed and 𝑡𝑡 = 𝜋𝜋
2𝜖𝜖

 

 

If could do sample-based Hamiltonian simulation for time 𝑡𝑡 and 
accuracy 1/3 with fewer than Ω 𝑡𝑡2  samples → contradiction 



Lower Bound Sketch 
Let 𝑓𝑓(𝑡𝑡, 𝛿𝛿) be the number of samples required to simulate 𝐻𝐻 = 𝜌𝜌 for time 𝑡𝑡 to 
accuracy 𝛿𝛿 using an optimal protocol. 
 
Part I ⇒ 𝑓𝑓 𝑡𝑡, 1

3
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II. Concatenation 
 
Suppose can simulate 𝐻𝐻 = 𝜌𝜌 for time 𝜏𝜏 to accuracy 𝛿𝛿  
Then can simulate 𝐻𝐻 = 𝜌𝜌 for time 𝑚𝑚𝑚𝑚 to accuracy 𝑚𝑚𝛿𝛿 by repeating 𝑚𝑚 ∈ ℤ+ 
times 
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II. Concatenation 
 
Suppose can simulate 𝐻𝐻 = 𝜌𝜌 for time 𝜏𝜏 to accuracy 𝛿𝛿  
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𝑚𝑚𝑚𝑚 can be 1/3 𝛿𝛿 can be small! 

𝑓𝑓 𝑡𝑡, 𝛿𝛿 = Ω(𝑡𝑡2/𝛿𝛿) 



Lower Bound Sketch 
Proof sketch used mixed states, but using similar ideas, can prove also optimal 
for pure states. 
 



Application of Lower Bound Technique 

State-based Grover Search: 
 

 𝑂𝑂𝑆𝑆 s.t. 𝑂𝑂𝑆𝑆 𝜓𝜓 𝑏𝑏 =  
𝜓𝜓 𝑏𝑏⊕ 1  if 𝜓𝜓 ∈ 𝑆𝑆, for 𝑆𝑆 a subspace of ℂ2𝑛𝑛  

𝜓𝜓 𝑏𝑏  otherwise 

Given: 

 Sample access to an unknown state |𝜙𝜙⟩ 

Decide:   Is overlap of |𝜙𝜙⟩ with 𝑆𝑆 zero or 𝜆𝜆, promised one is the case, using 
as few copies of 𝜙𝜙  possible.  
  



Application of Lower Bound Technique 

State-based Grover Search: 
 

Normally:  𝑂𝑂 1
𝜆𝜆

 uses of 𝑂𝑂𝑆𝑆 
 
In our case:  We show require Ω 1

𝜆𝜆
 copies of |𝜙𝜙⟩ 

 
Why:  
• In Grover’s algorithm, need to reflect about |𝜙𝜙⟩, but given only 

sample access to 𝜙𝜙 , this is difficult!  
• Can use Hamiltonian simulation, but not very efficient. 
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Split Simulation 

Suppose can prepare the state 
 

𝜌𝜌𝜌 = |0⟩⟨0| ⊗𝜌𝜌+ + |1⟩⟨1| ⊗𝜌𝜌− 
 
Where 𝜌𝜌+,𝜌𝜌− ≿ 0 are subnormalized states, but 𝜌𝜌+ + 𝜌𝜌− is a normalized 
state.  Then can simulate 

𝐻𝐻 = 𝜌𝜌+ − 𝜌𝜌− 

for time 𝑡𝑡, accuracy 𝛿𝛿, using 𝑂𝑂 𝑡𝑡2

𝛿𝛿
 copies of 𝜌𝜌𝜌  
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𝛿𝛿
 copies of 𝜌𝜌’  

• Idea:  Apply unitary 
|0⟩⟨0| ⊗𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 + |1⟩⟨1| ⊗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
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• Idea:  Apply unitary 
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 to state 
(|0⟩⟨0| ⊗𝜌𝜌+ + 1 1 ⊗𝜌𝜌− ⊗ 𝜎𝜎 

 
 then discard system 



Commutator/Anti-commutator Simulation 

Given:   𝜌𝜌1,𝜌𝜌2 
 
Simulate:  𝐻𝐻 = 𝑖𝑖[𝜌𝜌1,𝜌𝜌2] or 𝐻𝐻 = {𝜌𝜌1,𝜌𝜌2} for time 𝑡𝑡, error 𝛿𝛿  



Commutator/Anti-commutator Simulation 

1
2

0 +
𝑒𝑒𝑖𝑖𝑖𝑖

2
|1⟩ 

• Claim output of circuit is: 
 

|0⟩⟨0| ⊗𝜌𝜌+ + |1⟩⟨1| ⊗𝜌𝜌− 
    where 

𝜌𝜌+ − 𝜌𝜌− =
1
2
𝑒𝑒𝑖𝑖𝑖𝑖𝜌𝜌1𝜌𝜌2 + 𝑒𝑒−𝑖𝑖𝑖𝑖𝜌𝜌2𝜌𝜌1  



Commutator/Anti-commutator Simulation 

Uses Θ(𝑡𝑡2/𝛿𝛿) samples 

Given:   𝜌𝜌1,𝜌𝜌2 
 
Simulate:  𝐻𝐻 = 𝑖𝑖[𝜌𝜌1,𝜌𝜌2] or 𝐻𝐻 = {𝜌𝜌1,𝜌𝜌2} for time 𝑡𝑡, error 𝛿𝛿  



Applications of Commutator Simulation 

• State Addition:  
𝑒𝑒[|𝜓𝜓1⟩⟨𝜓𝜓1|, 𝜓𝜓2 ⟨𝜓𝜓2|]𝑡𝑡 is a rotation of the 2-D subspace 
spanned by |𝜓𝜓1⟩ and 𝜓𝜓2 .* Can rotate |𝜓𝜓1⟩ to  
𝛼𝛼 𝜓𝜓1 + 𝛽𝛽|𝜓𝜓2⟩. 

 
• Orthogonality Testing:  

Commutator of two orthogonal states is 0. Commutator 
simulation gives optimal strategy to test orthogonality 
(square root improvement over swap test). 

 
 * For 𝜓𝜓1 𝜓𝜓2 = 𝜆𝜆 ≠ 0 



Jordan-Lie Algebra Simulation 

Given:   𝜌𝜌1,𝜌𝜌2, … ,𝜌𝜌𝑘𝑘 
 
Simulate:  𝐻𝐻 = 𝑒𝑒𝑖𝑖𝑖𝑖𝜌𝜌1𝜌𝜌2 …𝜌𝜌𝑘𝑘 + 𝑒𝑒−𝑖𝑖𝑖𝑖𝜌𝜌𝑘𝑘𝜌𝜌𝑘𝑘−1 …𝜌𝜌1 



Jordan-Lie Algebra Simulation 

1
2

0 +
𝑒𝑒𝑖𝑖𝑖𝑖

2
|1⟩ 

𝜌𝜌𝑘𝑘 
⋮ ⋮ 𝑆𝑆 

𝑆𝑆: (1 → 2, 2 → 3 … k → 1) 

𝜌𝜌+ − 𝜌𝜌− =
1
2
𝑒𝑒𝑖𝑖𝑖𝑖𝜌𝜌1𝜌𝜌2 …𝜌𝜌𝑘𝑘 + 𝑒𝑒−𝑖𝑖𝑖𝑖𝜌𝜌𝑘𝑘 …𝜌𝜌2𝜌𝜌1  

|0⟩⟨0| ⊗𝜌𝜌+ + |1⟩⟨1| ⊗𝜌𝜌− 



Jordan-Lie Algebra Simulation 

Given:   𝜌𝜌1,𝜌𝜌2, … ,𝜌𝜌𝑘𝑘 , and 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑘𝑘 ∈ ℝ 
 
Simulate:  𝐻𝐻 = ∑ 𝑎𝑎𝑗𝑗(𝑒𝑒𝑖𝑖𝜙𝜙𝑗𝑗𝜌𝜌𝑟𝑟1𝜌𝜌𝑟𝑟2 …𝜌𝜌𝑟𝑟|𝑗𝑗| + 𝑒𝑒−𝑖𝑖𝜙𝜙𝑗𝑗𝜌𝜌𝑟𝑟|𝑗𝑗|𝜌𝜌𝑟𝑟|𝑗𝑗|−1 …𝜌𝜌𝑟𝑟1)  𝑗𝑗  



Jordan-Lie Algebra Simulation 

Given:   𝜌𝜌1,𝜌𝜌2, … ,𝜌𝜌𝑘𝑘 , and 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑘𝑘 ∈ ℝ 
 
Simulate:  𝐻𝐻 = ∑ 𝑎𝑎𝑗𝑗(𝑒𝑒𝑖𝑖𝜙𝜙𝑗𝑗𝜌𝜌𝑟𝑟1𝜌𝜌𝑟𝑟2 …𝜌𝜌𝑟𝑟|𝑗𝑗| + 𝑒𝑒−𝑖𝑖𝜙𝜙𝑗𝑗𝜌𝜌𝑟𝑟|𝑗𝑗|𝜌𝜌𝑟𝑟|𝑗𝑗|−1 …𝜌𝜌𝑟𝑟1)  𝑗𝑗  

Uses 𝑂𝑂(𝐿𝐿𝑎𝑎2𝑡𝑡2/𝛿𝛿) samples total 

• 𝐿𝐿 = max
j

|𝑗𝑗𝑘𝑘| 

• 𝑎𝑎 = ∑ |𝑎𝑎𝑗𝑗|𝑗𝑗  



Final application: Universal Model of QC 

• Fact 1: 
Partial SWAP (Heisenberg exchange) + single qubit gates are 
universal for quantum computing. [3] (In particular, arbitrary single 
qubit X and Z rotations). 
 

• Fact 2: 
– 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 with 𝜌𝜌 = |+⟩⟨+| give arbitrary X rotations 
– 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 with 𝜌𝜌 = |0⟩⟨0| give arbitrary Z rotations 

 
• Consequence: 

Heisenberg exchange plus source of |+⟩ and 0  states is universal 
for quantum computing (with polynomial overhead.) 

 
 • [3] Boyer, Brassard, Hoyer + ‘98 



Open Questions 

1. Is general Jordan Lie algebra simulation 
optimal? 

2. Copyright protection? 
3. Other applications? 
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