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* Need quantum algorithmic primitives
|. Apply to a wide range of problems
2. Easy to understand and analyze (without knowing
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— Ex:Searching unordered list of n items
— Classically, takes (2(n) time
— Quantumly, takes O (1/n) time

* New primitive: st-connectivity
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st-connectivity

st — connectivity:
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st — connectivity: ‘/ O
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Figure of Merit

* Query Complexity
—  Number of uses (queries) of the black box
—  All other operations are free

* Under mild assumption, for our algorithm,
quantum query complexity = quantum time complexity
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Boolean Formulas

Read-once: x;’s not fan out

Read-many: x; have fan out
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Boolean Formula Applications

* Logic

* Designing electrical circuits

* Game theory (deciding who will win a game)

* Combinatorics and graph problems

* Linear programming

 Testing potential solution to an NP-complete problem
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Application to Boolean Formulas

@AND: outputs 1 if all input @ OR: outputs 1 if any input
subformulas have value 1 subformulas have value 1
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Application to Boolean Formulas

* If we put edges where
x; = 1,sandt are

connected iff f(x) = 1! f(x)
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Application to Boolean Formulas
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Outline:

A. Introduction to Quantum Algorithms and st-connectivity
B. st-connectivity makes a good algorithmic primitive
|. Applies to a wide range of problems
* Evaluating Boolean formulas reduces to st-connectivity
2. Easy to understand (without knowing quantum mechanics)
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Effective Resistance
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Effective Resistance

Flow energy:

z (flow on edge)?

edges
Effective Resistance: R; ;(G)

Smallest energy of any valid flow from s
tot on G.

Properties of R . (G)

* Small if many short paths from s to t

* Large if few long paths from s to t
* |nfinite if s and t not connected
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Effective Capacitance

Graph G':

Cut energy:

z (Potential Energy Dif ference)?
edges

Effective Capacitance: C; . (G")
Smallest cut energy of any valid potential
energy between sto t on G’.

Properties of C; . (G")

*  Small if many small cuts
* Large if one large cuts 0t
* Infinite if s and t connected
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Algorithm Performance:

st-connectivity algorithm complexity =

0, max R..(G max C..(G'
GEH:connected S't( ) G'eH:not connected S't( )

[Belovs, Reichard,’12] [JJKP in progress]

Twith (s,t) added also planar
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Example

S
— ’ What is quantum complexity of deciding if

* s andt are connected, or
* Atleast VN edges are missing

\/ max R (G) \/ max Rg, ¢/(G")

GEH :connected GEH :not connected
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Quantum complexity is O( N1/*)

Randomized classical complexity is Q(Nl/z)
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The Algorithm

Span Program
* Span vectors
e Target vector

The input to the problem determines which subset of span vectors are
allowed.

If target vector is in span of the allowed span vectors, then function evaluates
to 1 on that input. Otherwise, evaluates to 0.

Thus span program encodes a function.
Infinite number of span programs can encode the same function
Given a span program, can create a quantum algorithm to evaluate the

corresponding function (create a quantum walk whose dispersion operators
are based on the vectors)



The Algorithm

Span Program
* Span vectors
e Target vector

Given a span program, can create a quantum algorithm to evaluate the
corresponding function (create a quantum walk whose dispersion operators
are based on the vectors)

The efficiency of the span program is a (relatively) simple function of the
vectors.

There is always a span program algorithm that is optimal (and many that are
not optimal.)




Open Questions and Current Directions

* When is our algorithm optimal for Boolean formulas? (Especially
partial/read-many formulas)

* Are there other problems that reduce to st-connectivity? (Perhaps
all?)

* What is the classical time/query complexity of st-connectivity in the
black box model? Under the promise of small capacitance/resistance?

* Does our reduction from formulas to connectivity give good classical
algorithms too?

* How to choose weights?




Other interests

* Statistical inference and machine learning applied to quantum
characterization problems
* Quantum complexity theory, especially quantum versions of NP
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—  Counts the total number of quantum operations, including uses

of black box.




Figure of Merit

* Quantum Query Complexity
—  Counts number of uses (queries) of the black box (inputs can

be queried in quantum superposition)
—  All other operations are free
— Imagine the black box is a hard to compute function, so we want

to minimize the number of times we use it.

* Quantum Time Complexity
—  Counts the total number of quantum operations, including uses

of black box.

Under a mild assumption, these two will be the same for our algorithm up
to a logarithmic factor.
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@AND: outputs 1 if all inputs are 1

@ OR: outputs 1 if any input is 1
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