Path Detection:
A Quantum Computing Primitive

Shelby Kimmel

Middlebury College

Based on work with
Stacey Jeffery: arXiv: 1704.00765 (Quantum vol | p 26)
Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, in progress



How to make quantum algorithms accessible?




How to make quantum algorithms accessible?

* Need quantum algorithmic primitives




How to make quantum algorithms accessible?

* Need quantum algorithmic primitives
|. Apply to a wide range of problems
2. Easy to understand and analyze (without knowing
quantum mechanics)




How to make quantum algorithms accessible?

* Need quantum algorithmic primitives
|. Apply to a wide range of problems
2. Easy to understand and analyze (without knowing
quantum mechanics)

— Ex:Searching unordered list of n items
— Classically, takes (2(n) time
— Quantumly, takes O (1/n) time




How to make quantum algorithms accessible?

* Need quantum algorithmic primitives
|. Apply to a wide range of problems
2. Easy to understand and analyze (without knowing
quantum mechanics)

— Ex:Searching unordered list of n items
— Classically, takes (2(n) time
— Quantumly, takes O (1/n) time

* New primitive: st-connectivity




Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive
|. Applies to a wide range of problems

2. Easy to understand (without knowing quantum mechanics)
C. Applications and performance of algorithm




st-connectivity

st — connectivity:
is there a path from s to t?




st-connectivity

st — connectivity: ‘/ O

is there a path from s to t?




Black Box Model

S
e,
i @ " 7 3 N
Al
£ :th . 4'll : [I
Edge ¢ =1ifi*"" edgeis U 5 J
label there \\ : ! .
* e; = 0 if edge is not “\ /I
there 6\\\ ,/
~ 1
‘t

Let H be the set of graphs G that the
black box might contain.



Figure of Merit

* Query Complexity
—  Number of uses (queries) of the black box
—  All other operations are free

* Under mild assumption, for our algorithm,
quantum query complexity = quantum time complexity




Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive
|. Applies to a wide range of problems

2. Easy to understand (without knowing quantum mechanics)
C. Applications and performance of algorithm




Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive
|. Applies to a wide range of problems
* Evaluating Boolean formulas reduces to st-connectivity
2. Easy to understand (without knowing quantum mechanics)
C. Applications and performance of algorithm




Boolean Formulas

@AND: outputs 1 if all inputs are 1

@ OR: outputs 1 if any input is 1

Value QO or 1

f(x)

(/) V

) [l [x




Boolean Formulas

f(x)

X1||X2]| | X3 x4 v

) [l [x




Boolean Formulas
f(x)

Read-once: x;’s not fan out

@ X10

X1||X2]| | X3 x4 v

) [l [x




Boolean Formulas

Read-once: x;’s not fan out

Read-many: x; have fan out

f(x)

(/) V

) [l [x




Boolean Formula Applications

* Logic

* Designing electrical circuits

* Game theory (deciding who will win a game)

* Combinatorics and graph problems

* Linear programming

 Testing potential solution to an NP-complete problem




Application to Boolean Formulas

@AND: outputs 1 if all input

subformulas have value 1

S

s and t are
connected if all
subgraphs are
connected

t .
D e @00



Application to Boolean Formulas

@AND: outputs 1 if all input @ OR: outputs 1 if any input
subformulas have value 1 subformulas have value 1

S
S

s and t are
connected if all
subgraphs are
connected

sand t are
connected if any
subgraph is
connected

t ;
D e @00



Application to Boolean Formulas

F) AR
\




Application to Boolean Formulas

* If we put edges where
x; = 1,sandt are

connected iff f(x) = 1! f(x)

N O Q-

x4 v
0 ffo]]|L]]o

5

82
U1
=
o)
82
N
<2 |
o |
=
O

=
-]
=
=
=




Application to Boolean Formulas




Application to Boolean Formulas




Outline:

A. Introduction to Quantum Algorithms and st-connectivity
B. st-connectivity makes a good algorithmic primitive
|. Applies to a wide range of problems
* Evaluating Boolean formulas reduces to st-connectivity
2. Easy to understand (without knowing quantum mechanics)




Effective Resistance

Graph G:




Effective Resistance

1 unit of flow

1 unit of flow




Effective Resistance

Valid flow:
e Junitinats
e J1unitoutatt

e At all other nodes, zero net
flow

1 unit of flow

D S
0 unit

of flow

flow 1—-f /
unit of )
flow /

1 unit /I
of flow /

1 unit of flow




Effective Resistance

Flow energy:

z (flow on edge)?

edges

1 unit of flow

.
1 unit 0 unit
of flo of flow

f unito y
ﬂOW 1 — f /I
unit of N
/
flow K
/
/
/
/
1 unit )/
/
of flow !

1 unit of flow




Effective Resistance

Flow energy:
z (flow on edge)?
edges f unito
flow
Effective Resistance: R; ;(G)
Smallest energy of any valid flow from s
tot on G.

1 unit of flow

LTAE, .

— 0 unit
of flo v
1-f

unit of /
flow /
1 unit /
of flow :

1 unit of flow




Effective Resistance

Flow energy:

z (flow on edge)?

edges
Effective Resistance: R; ;(G)

Smallest energy of any valid flow from s
tot on G.

Properties of R . (G)

* Small if many short paths from s to t

* Large if few long paths from s to t
* |nfinite if s and t not connected

1-f
unit of
flow

1 unit
of flow

1 unit of flow

ZZ88 <
0 unit
of flow

1 unit of flow




Effective Resistance

1 unit
resistors

{




Effective Resistance

- )
1 unit
resistors
‘s
RS,t(G) uni‘: < _____________ )

resistor
~ A-




Effective Capacitance




Effective Capacitance

Valid potential energy:

e lats

* QOatt

* Potential energy difference
is 0 across edge




Effective Capacitance

Valid potential energy:

e lats

* QOatt

* Potential energy difference
is 0 across edge




Effective Capacitance

Graph G':

Cut energy:

z (Potential Energy Dif ference)?
edges

Effective Capacitance: C; . (G")
Smallest cut energy of any valid potential
energy between sto t on G’.




Effective Capacitance

Graph G':

Cut energy:

z (Potential Energy Dif ference)?
edges

Effective Capacitance: C; . (G")
Smallest cut energy of any valid potential
energy between sto t on G’.

Properties of C; . (G")

*  Small if many small cuts
* Large if one large cuts 0t
* Infinite if s and t connected



Effective Capacitance

1 unit
capacitors S
& A

/

0 resistance
wires (short
circuit)




Effective Capacitance

Cs ¢ (G uniti
capacitor |

a—

-

1 unit
capacitors

/

0 resistance
wires (short
circuit)




Algorithm Performance:

st-connectivity algorithm complexity =

0, max R..(G max C..(G'
GEH:connected S't( ) G'eH:not connected S't( )

Twith (s,t) added also planar



Algorithm Performance:

st-connectivity algorithm complexity =

0, max R..(G max C..(G'
GEH:connected S't( ) G'eH:not connected S't( )

[Belovs, Reichard,’12] [JJKP in progress]

Twith (s,t) added also planar



Example

What is quantum complexity of deciding
AND(xq,x5,...,Xy), promised
* Allx; =1,0r

*  Atleast VN input variables are 0.




Example

S

- ’ What is quantum complexity of deciding
AND(xq,x5,...,Xy), promised

* Allx; =1,0r

*  Atleast VN input variables are 0.

What is quantum complexity of deciding if
e s andt are connected, or

» Atleast VN edges are missing

:
.




Example

S
— ’ What is quantum complexity of deciding if

* s andt are connected, or
* Atleast VN edges are missing

\/ max R (G) \/ max Cs:(G")

GEH :connected G'eH:not connected

:
.




Example

S

1 unit
of flow

1 unit
of flow

1 unit
of flow

1 unit
of flow

What is quantum complexity of deciding if
e s andt are connected, or

* At least VN edges are missing

max
GEH:connected

max
GEH :connected

max
G'eH mot connected

R (G) J

Rs:(G) =N

(st (G')



Example

S
— ’ What is quantum complexity of deciding if

* s andt are connected, or
* Atleast VN edges are missing

\/ max R (G) \/ max Cs:(G")

GEH :connected G'eH:not connected

:
.




Example

|1
i

What is quantum complexity of deciding if
e s andt are connected, or

* At least VN edges are missing

\/ max R (G) \/ max Cs:(G")

GEH :connected G'eH:not connected




Example

— @ 1 What is quantum complexity of deciding if
e s andt are connected, or

* At least VN edges are missing

1
1
1
1
® -
\/N \/Ge}[:ggifected Rs,t (G) \/G’e}[:ngltlcag(nnected Cs,t (G )
I VN
l
T 0
0




Example

’ 1 What is quantum complexity of deciding if
* sandt are connected, or

* At least VN edges are missing

1
1- VN \/ max R (G) \/ max Cs:(G")

GEH :connected G'eH:not connected

G'eH:mot connected

max C..(G" =N x <L>2 = i
st = N




Example

S
— ’ What is quantum complexity of deciding if

* s andt are connected, or
* Atleast VN edges are missing

\/ max R (G) \/ max Rg, ¢/(G")

GEH :connected GEH :not connected

N 1/VN

Quantum complexity is O( N1/*)

:
B . | I
:




Example

S
— ’ What is quantum complexity of deciding if

* s andt are connected, or
* Atleast VN edges are missing

\/ max R (G) \/ max Rg, ¢/(G")

GEH :connected GEH :not connected

:
B . | I
:

N 1/VN

Quantum complexity is O( N1/*)

Randomized classical complexity is Q(Nl/z)




New Example

S
. : /'Q\ 2
Connectivity — is every vertex 1. N
N
connected to every other vertex! e 3 N
A J
/‘- ®
/7 | J
4 ! /
R /
‘g /
S !
\ Y} 7
!
N /
6> /
S S
S




New Example

e S
. . . ,
Connectivity — is every vertex 1.7 ‘\2
connected to every other vertex! ~ 3 RN
i
. /
4 [ 1 (4
\ 12 .
Connectivity= N : ]
(st — conn) A (su — conn) A (uv — conn) ... “ H 7
N I
b
N /
6 \\ J
N




New Example ¥N2

- : /
Connectivity — is every vertex N /]
5 N
connected to every other vertex! ..___‘
I Nt
N Ty
[0 \
AU
\
L\ 5 .
. \ \
Connectivity= L \
(st — conn) A (su — conn) A (uv — conn) ... ?9’,*{" 9.




o7
New Example ¥

V4 3 N,
--3--"¢
AT
4( : 5 K
\\‘\ 17
Connectivity — is every vertex N /7
N
connected to every other vertex? ,.S._"k_‘
Nt
Ny el
[0 \
7 \
o
L\ 5 .
\
Results: N \
~
= Worst case: 0(n3/2) (n = # vertices) }(9‘5’*-& -9.
*  Promised A \\9 1o
*  YES — diameter is D ? M)
* NO — every connected component & ’,ff’.
has at most n™ vertices ‘e_o | -7 >
* 0(Vnn'D) \ AN
S




New Example ¥

. : /
Connectivity — is every vertex N/
S N
connected to every other vertex! .____‘
I Nt
N Ty
[ ,» \
"Gt
\
L\ .
Results: N \
~
«  Worst case: 0(n3/?) (n = # vertices) P -,
: -
*  Promised 1,0 Ny
: : MELE g
*  YES — diameter is D ? s
* NO — every connected component & ,¢".
-
has at most n™ vertices ‘e g L-o7 2
- 0(vnn*D) \ g\\‘q
\ 6 N1
L\ »
(Diameter result previously discovered by \ e
: : . : \
Arins using slightly different approach) Wl




The Algorithm

Span Program
* Span vectors
e Target vector

The input to the problem determines which subset of span vectors are
allowed.

If target vector is in span of the allowed span vectors, then function evaluates
to 1 on that input. Otherwise, evaluates to 0.

Thus span program encodes a function.
Infinite number of span programs can encode the same function
Given a span program, can create a quantum algorithm to evaluate the

corresponding function (create a quantum walk whose dispersion operators
are based on the vectors)



The Algorithm

Span Program
* Span vectors
e Target vector

Given a span program, can create a quantum algorithm to evaluate the
corresponding function (create a quantum walk whose dispersion operators
are based on the vectors)

The efficiency of the span program is a (relatively) simple function of the
vectors.

There is always a span program algorithm that is optimal (and many that are
not optimal.)




Open Questions and Current Directions

* When is our algorithm optimal for Boolean formulas? (Especially
partial/read-many formulas)

* Are there other problems that reduce to st-connectivity? (Perhaps
all?)

* What is the classical time/query complexity of st-connectivity in the
black box model? Under the promise of small capacitance/resistance?

* Does our reduction from formulas to connectivity give good classical
algorithms too?

* How to choose weights?




Other interests

* Statistical inference and machine learning applied to quantum
characterization problems
* Quantum complexity theory, especially quantum versions of NP




Classical Computing

Computer’s time
internal state

000 ...000 \\\\
000...001

000...010

111...111 T

. /

Final state
encodes solution




Probabilistic Computing

Computer’s
internal state

time

//’000."000

000...001
000...010

\\\111."111

|

Each path is weighted
by a probability

Probability of being at a
given end state is sum of
probabilities of paths that
end there




Quantum Computing

Computer’s time
>

internal state

//’000."000 \\\
000...001
000...010

\_ 111..111 A ‘///

Probability of being at a

. . given end state is related
Each path is weighted to sum of weights of

2 Bl (U i e paths that end there




Quantum Computing

Computer’s time
>

internal state

//’000."000

000...001
000...010

\\\111."111
|

Probability of being at a

. . given end state is related
Each path is weighted to sum of weights of

2 Bl (U i e paths that end there




Figure of Merit

* Quantum Query Complexity
—  Counts number of uses (queries) of the black box (inputs can

be queried in quantum superposition)

—  All other operations are free
— Imagine the black box is a hard to compute function, so we want

to minimize the number of times we use it.

* Quantum Time Complexity
—  Counts the total number of quantum operations, including uses

of black box.




Figure of Merit

* Quantum Query Complexity
—  Counts number of uses (queries) of the black box (inputs can

be queried in quantum superposition)
—  All other operations are free
— Imagine the black box is a hard to compute function, so we want

to minimize the number of times we use it.

* Quantum Time Complexity
—  Counts the total number of quantum operations, including uses

of black box.

Under a mild assumption, these two will be the same for our algorithm up
to a logarithmic factor.



Boolean Formulas

@AND: outputs 1 if all inputs are 1

@ OR: outputs 1 if any input is 1

Value QO or 1

f(x)

(/) V

) [l [x




Boolean Formulas

@AND: outputs 1 if all inputs are 1

@ OR: outputs 1 if any input is 1

Value QO or 1

f(x)

(/) V

) [l [x




Boolean Formulas

@AND: outputs 1 if all inputs are 1

@ OR: outputs 1 if any input is 1

Value QO or 1

f(x)

LW

(/) V

) [l [x




Boolean Formulas

@AND: outputs 1 if all inputs are 1

@ OR: outputs 1 if any input is 1

Value QO or 1

flx) =1

LW

(/) V

) [l [x




