Speed-ups for Quantum
Algorithms with Easier Inputs

Shelby Kimmel, Jay-U Chung, Noel Anderson
Middlebury College

Noel Anderson, SK, and Jay-U Chung arXiv:2012.01276

Kai DeLorenzo, SK, Teal Witter, arXiv:1904.05995 (TQC 2019)

Michael Jarret, Stacey Jeffery, SK, Alvaro Piedrafita, arXiv:1804.10591 (ESA 2018)
Stacey Jeffery, SK: arXiv:1704.00765 (Quantum vol 1 p 26)



Easy vs Hard Instances

Path-Detection:

Harder: Easier:
EXIT

ENTRANCE

ENTRANCE




Easy vs Hard Instances: Classically

Ex: Path-Detection

Run search from ENTRANCE for time T (based on size of maze).
e If find EXIT, stop and output YES, otherwise continue

e If after time T don’t find EXIT, output NO



Easy vs Hard Instances: Classically

Ex: Path-Detection

Run search from ENTRANCE for time T (based on size of maze).
e If find EXIT, stop and output YES, otherwise continue

e If after time T don’t find EXIT, output NO

If easier: shorter run time
If harder: longer run time



Easy vs Hard Instances: Classically

Ex: Path-Detection

Run search from ENTRANCE for time T (based on size of maze).
e If find EXIT, stop and output YES, otherwise continue

e If after time T don’t find EXIT, output NO

If easier: shorter run time
If harder: longer run time

Key properties:
1. Can check status mid-algorithm and continue running
2. Witness of completion (if find EXIT, convinced there is a path)



Easy vs Hard Instances: Quantumly

Run search from ENTRANCE
e If find EXIT, stop and output YES, o
e |f after time T don’t find EXIT, o

ased on size of maze).
wise continue
NO

If easier: shorter run time
If harder: longer run time ‘

Key properties:
1. Can check status mid-algorithm and continue running
2. Witness of completion (if find EXIT, convinced there is a path)

X



Our Result

For a large class of quantum algorithms that previously used worst-case complexity
for all instances:



Our Result

For a large class of quantum algorithms that previously used worst-case complexity
for all instances:

Create a modified algorithm:
* If hard instance:



Our Result

For a large class of quantum algorithms that previously used worst-case complexity
for all instances:

Create a modified algorithm:
* If hard instance: (approximately) previous worst-case complexity



Our Result

For a large class of quantum algorithms that previously used worst-case complexity
for all instances:

Create a modified algorithm:
* If hard instance: (approximately) previous worst-case complexity

 |f easier instance:



Our Result

For a large class of quantum algorithms that previously used worst-case complexity
for all instances:

Create a modified algorithm:
* If hard instance: (approximately) previous worst-case complexity
* If easier instance: better complexity



Talk Outline

1. Oracle Model
2. Challenges:

a. No check and continue

b. No (easily accessible) witness of completion
3. Applications & Future Work



Oracle Model

1 & ..
START 6 v 3 0O



Oracle Model

1 & ..
START 6 v 3 0O



Oracle Model

_ .4
1. .
START 6 ‘e



Oracle Model

START 6 3



Oracle Model

—’
-—
-
—’
-

START 6 3
Goal: to solve our

- - ~<_5 ~-=_ problem while querying

RS 228 END . .
Se_ -7 as few times as possible
7 ———— \\\



Quantum Oracle Model

Problem:
e Algorithm for f: X — {0,1} (e.g. is there a path?)

Input Output:
Oy for instance x € X f(x), using as few queries as possible
(e.g. edge positions) * in worst case over X

* while using fewer queries on easier

instances
|£}10) —>—> |} )
# of queries — “runtime” — query complexity



Talk Outline

1. Oracle Model
2. Challenges:

a. No check and continue <«— Easy

b. No (easily accessible) witness of completion +— Harder
3. Applications & Future Work



Quantum If/Else?

Classically: Easy



Quantum If/Else?

Classically: Easy

Quantumly:

o jf/else > measurement

* Measurement — collapse

* Collapse = computation ruined



Quantum If/Else?

Worst case runtime T

Time until

measurement o
4 o 06 0
2

1 2 3 logT

Iteration



Quantum If/Else?

Worst case runtime T
Total Runtime:

o(T)
. (Geometric series)
Time until
measurement ‘
4 o 0 0
2

1 2 3 logT

Iteration



Quantum If/Else?

Worst case runtime T
Total Runtime:

0(T)
. (Geometric series)
Time until Runtime with Error
measurement o Reduction:
0(T)
4 [ I B J
2
1 2 3 logT

Iteration



Talk Outline

1. Oracle Model
2. Challenges:

a. No check and continue «— Easy |V

b. No (easily accessible) witness of completion <+— Harder
3. Applications & Future Work



Our Result

Span program algorithms

e

For a large class of quantum algorithms that previously used worst-case runtime for
all instances:

Create a modified algorithm:
e If worst-case instance: (approximately) previous worst case run time
* If easier instance: shorter run time



Span Program Algorithms

V Boolean function, 3 span program algorithm:
 Query optimal for worst-case inputs

Reichardt 2009 FOCS, Reichardt 2011 SODA



Span Program Algorithms

V Boolean function, 3 span program algorithm:
 Query optimal for worst-case inputs
* Not known how to get a speed-up for easier instances

Reichardt 2009 FOCS, Reichardt 2011 SODA



Span Program Algorithms

V Boolean function, 3 span program algorithm:
 Query optimal for worst-case inputs
 Not known how to get a speed-up for easier instances*

*If don’t know ahead of time that instance is easy

Reichardt 2009 FOCS, Reichardt 2011 SODA



Span Program Algorithms

V Boolean function, 3 span program algorithm:
 Query optimal for worst-case inputs
 Not known how to get a speed-up for easier instances*

*If don’t know ahead of time that instance is easy

Key subroutine: Phase estimation

Reichardt 2009 FOCS, Reichardt 2011 SODA



Phase Estimation

Ulp) = )

2T

5/6

Phase 4/6
30— 1
2/0
1/6



Phase Estimation

Phase Estimation

_ il
Ulp) = e |Y) Outcome Probability
2T 2T >
5/6 5/6
Phase 4/¢ 4/0
364 4 3/6
2/0 2/0
1/6 1/0 ¢«



Phase Estimation

Phase

2T

5/6
4/
3/6
2/6
1/6

Ulp) = )

Larger 6

2T

—— More

gueries

Phase Estimation
Outcome Probability

—>



Phase Estimation for Span Programs

Phase estimation in span program algorithm

* If f(x) =YES,
e Qutput phase=0w.h.p
 Iff(x) =NO

* Qutput phase # 0 w.h.p



Phase Estimation for Span Programs

Phase estimation in span program algorithm
* If f(x) =YES,

e Qutput phase=0w.h.p
 Iff(x) =NO

* Qutput phase # 0 w.h.p

Strategy: Reduce precision



Reduce Precision (0)

Case 1. Phase estimation
YES ) Eigenphase Outcome Probability
Py — )7 J—>
2/ 2/6'
Phase
1/6' 1/6!

0 A 0 OK!



Reduce Precision (0)

Case 2: Phase estimation
HARD NO |y} Eigenphase Outcome Probability
Py — )7 J—>
2/ 2/6'
Phase
1/6" 1/0"



Reduce Precision (0)

Case 2: Worl
bbability
HARD NO . Low precision, output O
. —
2/-0, unable to distinguish YES/NO
Phase

1/6'



Reduce Precision (0)

Eigenstate as witness?

Upcoming work




Reduce Precision (0)

Case 2: Worl
bbability
HARD NO . Low precision, output O
. —
2/-0, unable to distinguish YES/NO
Phase

1/6'



Reduce Precision (0)

Case 3: Phase estimation
Easy NO ) Eigenphase Outcome Probability
Py — )7 J—>
2/.9’ 2/.9’ —
Phase —— )|
1/6° 1/6'§ e \/



Reduce Precision (0)

Case 3: oo
bbability
Easy NO . Low precision, output #0
. —
2/-0, Confident NO
Phase



Reduce Precision (0)

* Run span program phase estimation with exponentially increasing
precision 6. Each iteration:
» If 0 output, continue
» If non-0 output, stop and output NO

Result: faster runtime for easy NO instances



Easy Yes Instances?

Design negated span program to exchange YES/NO instances

Result: Easy YES instance — easy NO instance



All Together

With exponentially increasing precision:

* Span program phase estimation
» If non-0 phase, stop and output NO

* Negated span program phase estimation
» If non-0 phase, stop and output YES

Result:
» faster for easy YES and NO instances
* Worst-case increases by only log factor (geometric scaling)



All Together

With exponentially increasing precision:

* Span program phase estimation
» If non-0 phase, stop and output NO

* Negated span program phase estimation
» If non-0 phase, stop and output YES

Result:

» faster for easy YES and NO instances
* Worst-case increases by only log factor (geometric scaling)

*Not exactly our algorithm :D



Performance

In span program, each instance x € X has witness size w(x).

Original span program algorithm query complexity:

O (oo P2 @) (en o ")




Performance

In span program, each instance x € X has witness size w(x).

Original span program algorithm query complexity:

0 (J (x5 ) (wex P W<x>)>

If promised that only have YES instances with w(x) < w

0 (J e




Performance

In span program, each instance x € X has witness size w(x).

Original span program algorithm query complexity:
O (oo P2 @) (en o ")

Our query complexity (no promise):
* Ifinputinstance x’ is YES:

0 <\/W(x’) (xex?(?c))(:NO W(x))>

* Ifinputinstance x' is NO

0 <Jw(x’) (XEX:%%(:YESW(@»




Talk Outline

1. Oracle Model
2. Challenges:

a. No check and continue <«— Easy

b. No (easily accessible) witness of completion +— Harder
3. Applications & Future Work



Path Detection



Path Detection

For each instance, calculate
« effective resistance (if path)

x =011
w(x) =1/2




Path Detection

For each instance, calculate
« effective resistance (if path)

x =001
w(x) =1




Path Detection

For each instance, calculate
« effective resistance (if path)
» effective capacitance (if cut)

x = 000
w(x) =3

Jarret, Jeffery, SK, Piedrafita, (ESA 2018)
Reichard and Belovs, ESA 2012



Path Detection Applications

Grover’s search!




Path Detection Applications

Grover’s search!

m edges > w(x) =1/m
0 edges > w(x) =n

If input instance x' is YES:

0 (\/W(x’) (xexf}l(?c))(:NO W(x))>




Path Detection Applications

Grover’s search!

With our algorithm: if m of n items are
marked, can solve in

() 1

qgueries without knowing m ahead of
time

Matches: Boyer, Brassard, Hoyer, Tapp [1998] (Highly search specific)
Up to log factors: Yoder, Low, Chuang [2014] (Highly search specific)



Path Detection Applications (- 2l NG
._

S.‘ 4
Cycle finding! S
N Ss. 5
1 5 3 \\4 \\\
. . ~
Can detect whether a cycle is present in 1 N "N
~ (n3/2 . byl Q’ o ® \:‘
0, ( ) where ¢ is number of cycles, 2/ %5 I 1 /13
Ve v 173 e o 2
without knowing ¢ ahead of time. _ ) ¢ 9 /
M 4]/ 4,7
\ [II,S &”
3 L 4 2 o
\ l/ ,I’
‘\I/ &”

Delorenzo, SK, Witter, arXiv:1904.05995 (TQC 2019)



Path Detection Applications

Formula Evaluation Q

((x1 Axy)V (mx3 Axy) V ((x5 Vxg) AN(—x;VxgV xg))) A X1

Connection between easier formula
instances and small effective resistance?

Jeffery, SK: arXiv:1704.00765 (Quantum vol 1 p 26)



State generation extension

State Generation Problem:
Convert |p,) to |o,) given access to O,.

There is a span program-like algorithm that is nearly optimal for worst-case x.
Running faster on easier inputs?

Challenge:
Original algorithm has no measurements!

Our Result:
Use an auxiliary test to determine when can stop running.



Future/Current Work

* Opportunities for average case quantum vs. classical algorithms

* Best classical algorithm on graphs with small effective resistance
* Get rid of log factors from error suppression? (Fixed-point methods)
* Generate witness states



Thank youl!

. + Stacey
Middlebury

College

Noel
Anderson

Teal Kai De
Jay-U Witter Lorenzo
Chung

Alvaro
Piedrafita

Michael
Jarret




