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Easy vs Hard Instances: Quantumly

Run search from ENTRANCE
e If find EXIT, stop and output YES, o
e |f after time T don’t find EXIT, o

ased on size of maze).
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If easier: shorter run time
If harder: longer run time ‘

Key properties:
1. Can check status mid-algorithm and continue running
2. Witness of completion (if find EXIT, convinced there is a path)
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Our Result

For a large class of quantum algorithms that previously used worst-case complexity
for all instances:

Create a modified algorithm:
* If hard instance: (approximately) previous worst-case complexity
* If easier instance: better complexity



Talk Outline

1. Oracle Model
2. Challenges:

a. No check and continue

b. No (easily accessible) witness of completion
3. Applications & Future Work
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Quantum Oracle Model

Problem:
e Algorithm for f: X — {0,1} (e.g. is there a path?)

Input Output:
Oy for instance x € X f(x), using as few queries as possible
(e.g. edge positions) * in worst case over X

* while using fewer queries on easier

instances
|£}10) —>—> |} )
# of queries — “runtime” — query complexity
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Quantum If/Else?

Classically: Easy

Quantumly:

o jf/else > measurement

* Measurement — collapse

* Collapse = computation ruined
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Worst case runtime T
Total Runtime:
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Our Result

Span program algorithms

e

For a large class of quantum algorithms that previously used worst-case runtime for
all instances:

Create a modified algorithm:
e If worst-case instance: (approximately) previous worst case run time
* If easier instance: shorter run time
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Span Program Algorithms

V Boolean function, 3 span program algorithm:
 Query optimal for worst-case inputs
 Not known how to get a speed-up for easier instances*

*If don’t know ahead of time that instance is easy

Key subroutine: Phase estimation

Reichardt 2009 FOCS, Reichardt 2011 SODA
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Phase Estimation for Span Programs

Phase estimation in span program algorithm
* If f(x) =YES,

e Qutput phase=0w.h.p
 Iff(x) =NO

* Qutput phase # 0 w.h.p

Strategy: Reduce precision



Reduce Precision (0)
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Reduce Precision (0)

Eigenstate as witness?

Upcoming work
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Reduce Precision (0)
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Reduce Precision (0)

Case 3: oo
bbability
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Reduce Precision (0)

* Run span program phase estimation with exponentially increasing
precision 6. Each iteration:
» If 0 output, continue
» If non-0 output, stop and output NO

Result: faster runtime for easy NO instances



Easy Yes Instances?

Design negated span program to exchange YES/NO instances

Result: Easy YES instance — easy NO instance
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* Negated span program phase estimation
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* Worst-case increases by only log factor (geometric scaling)



All Together

With exponentially increasing precision:

* Span program phase estimation
» If non-0 phase, stop and output NO

* Negated span program phase estimation
» If non-0 phase, stop and output YES

Result:

» faster for easy YES and NO instances
* Worst-case increases by only log factor (geometric scaling)

*Not exactly our algorithm :D
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Performance

In span program, each instance x € X has witness size w(x).

Original span program algorithm query complexity:
O (oo P2 @) (en o ")

Our query complexity (no promise):
* Ifinputinstance x’ is YES:

0 <\/W(x’) (xex?(?c))(:NO W(x))>

* Ifinputinstance x' is NO

0 <Jw(x’) (XEX:%%(:YESW(@»




Talk Outline

1. Oracle Model
2. Challenges:

a. No check and continue <«— Easy

b. No (easily accessible) witness of completion +— Harder
3. Applications & Future Work



Path Detection



Path Detection

For each instance, calculate
« effective resistance (if path)

x =011
w(x) =1/2




Path Detection
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Path Detection

For each instance, calculate
« effective resistance (if path)
» effective capacitance (if cut)

x = 000
w(x) =3

Jarret, Jeffery, SK, Piedrafita, (ESA 2018)
Reichard and Belovs, ESA 2012
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Path Detection Applications

Grover’s search!

m edges > w(x) =1/m
0 edges > w(x) =n

If input instance x' is YES:

0 (\/W(x’) (xexf}l(?c))(:NO W(x))>




Path Detection Applications

Grover’s search!

With our algorithm: if m of n items are
marked, can solve in

() 1

qgueries without knowing m ahead of
time

Matches: Boyer, Brassard, Hoyer, Tapp [1998] (Highly search specific)
Up to log factors: Yoder, Low, Chuang [2014] (Highly search specific)
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Delorenzo, SK, Witter, arXiv:1904.05995 (TQC 2019)



Path Detection Applications

Formula Evaluation Q

((x1 Axy)V (mx3 Axy) V ((x5 Vxg) AN(—x;VxgV xg))) A X1

Connection between easier formula
instances and small effective resistance?

Jeffery, SK: arXiv:1704.00765 (Quantum vol 1 p 26)



State generation extension

State Generation Problem:
Convert |p,) to |o,) given access to O,.

There is a span program-like algorithm that is nearly optimal for worst-case x.
Running faster on easier inputs?

Challenge:
Original algorithm has no measurements!

Our Result:
Use an auxiliary test to determine when can stop running.



Future/Current Work

* Opportunities for average case quantum vs. classical algorithms

* Best classical algorithm on graphs with small effective resistance
* Get rid of log factors from error suppression? (Fixed-point methods)
* Generate witness states
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