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Easy vs Hard Instances: Quantumly

Key properties:
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Our Result

For a large class of quantum algorithms that previously used worst-case complexity 
for all instances:

Create a modified algorithm:
• If hard instance: (approximately) previous worst-case complexity
• If easier instance: better complexity



Talk Outline
1. Oracle Model
2. Challenges:

a. No check and continue
b. No (easily accessible) witness of completion

3. Applications & Future Work
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Goal: to solve our 
problem while querying 
as few times as possible



Quantum Oracle Model

𝑂!

Problem:
• Algorithm for 𝑓: 𝑋 → {0,1} (e.g. is there a path?)

Input
𝑂! for instance 𝑥 ∈ 𝑋
(e.g. edge positions)

Output:
𝑓(𝑥), using as few queries as possible
• in worst case over 𝑋
• while using fewer queries on easier 

instances

# of queries – “runtime” – query complexity

𝑖 |0⟩ 𝑖 |𝑥!⟩
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Quantum If/Else?
Classically: Easy

Quantumly: 
• if/else → measurement
• Measurement → collapse
• Collapse → computation ruined
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Our Result

For a large class of quantum algorithms that previously used worst-case runtime for 
all instances:

Span program algorithms

Create a modified algorithm:
• If worst-case instance: (approximately) previous worst case run time
• If easier instance: shorter run time
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Span Program Algorithms

∀ Boolean function, ∃ span program algorithm: 
• Query optimal for worst-case inputs
• Not known how to get a speed-up for easier instances* 

*If don’t know ahead of time that instance is easy

Key subroutine: Phase estimation

Reichardt 2009 FOCS, Reichardt 2011 SODA
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Phase estimation in span program algorithm
• If 𝑓 𝑥 = 𝑌𝐸𝑆, 
• Output phase = 0 w.h.p

• If 𝑓 𝑥 = 𝑁𝑂
• Output phase ≠ 0 w.h.p

Strategy: Reduce precision
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Reduce Precision (𝜃)

Eigenstate as witness?
Upcoming work
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Reduce Precision (𝜃)

• Run span program phase estimation with exponentially increasing 
precision 𝜃. Each iteration:
Ø If 0 output, continue
Ø If non-0 output, stop and output NO

Result: faster runtime for easy NO instances



Easy Yes Instances?

Design negated span program to exchange YES/NO instances

Result: Easy YES instance → easy NO instance



All Together

With exponentially increasing precision:
• Span program phase estimation

Ø If non-0 phase, stop and output NO
• Negated span program phase estimation

Ø If non-0 phase, stop and output YES

Result: 
• faster for easy YES and NO instances
• Worst-case increases by only log factor (geometric scaling)



All Together

With exponentially increasing precision:
• Span program phase estimation

Ø If non-0 phase, stop and output NO
• Negated span program phase estimation

Ø If non-0 phase, stop and output YES

Result: 
• faster for easy YES and NO instances
• Worst-case increases by only log factor (geometric scaling)

*Not exactly our algorithm :D
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Performance
In span program, each instance 𝑥 ∈ 𝑋 has witness size 𝑤 𝑥 .

Original span program algorithm query complexity:

𝑂 max
!∈%:' ! ()*+

𝑤 𝑥 max
!∈%∶' ! (-.

𝑤 𝑥

Our query complexity (no promise):
• If input instance 𝑥′ is YES:

3𝑂 𝑤(𝑥/) max
!∈%∶' ! (-.

𝑤 𝑥

• If input instance 𝑥/ is NO

3𝑂 𝑤(𝑥/) max
!∈%∶' ! ()*+

𝑤 𝑥
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Path Detection

𝑡

𝑠

For each instance, calculate 
• effective resistance (if path) 
• effective capacitance (if cut)

𝑥 = 000

𝑤 𝑥 = 3 2
3

1

• Jarret, Jeffery, SK, Piedrafita, (ESA 2018)
• Reichard and Belovs, ESA 2012
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Grover’s search!

𝑚 edges →𝑤 𝑥 = 1/𝑚
0 edges →𝑤 𝑥 = 𝑛
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2
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If input instance 𝑥′ is YES:

3𝑂 𝑤(𝑥/) max
!∈%∶' ! (-.

𝑤 𝑥



Path Detection Applications
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Grover’s search!

With our algorithm: if 𝑚 of 𝑛 items are 
marked, can solve in 

3𝑂 0
1

queries without knowing 𝑚 ahead of 
time

Matches: Boyer, Brassard, Hoyer, Tapp [1998] (Highly search specific)
Up to log factors: Yoder, Low, Chuang [2014] (Highly search specific)



Path Detection Applications

Cycle finding!

Can detect whether a cycle is present in 
3𝑂 0!/#

2 where 𝑐 is number of cycles, 
without knowing 𝑐 ahead of time. 
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Path Detection Applications

Formula Evaluation

𝑥:;

𝑥:

𝑥<

𝑥=

𝑥>

𝑥?

¬𝑥@
𝑥A

𝑥B

𝒔

𝒕

𝑥: ∧ 𝑥< ∨ ¬𝑥C ∧ 𝑥= ∨ 𝑥> ∨ 𝑥? ∧ ¬𝑥@ ∨ 𝑥A ∨ 𝑥B ∧ 𝑥:;

Connection between easier formula 
instances and small effective resistance?

¬𝑥C

• Jeffery, SK: arXiv:1704.00765 (Quantum vol 1 p 26)



State generation extension
State Generation Problem:
Convert |𝜌!⟩ to |𝜎!⟩ given access to 𝑂!.

There is a span program-like algorithm that is nearly optimal for worst-case 𝑥. 
Running faster on easier inputs?

Challenge:
Original algorithm has no measurements! 

Our Result:
Use an auxiliary test to determine when can stop running.



Future/Current Work

• Opportunities for average case quantum vs. classical algorithms
• Best classical algorithm on graphs with small effective resistance

• Get rid of log factors from error suppression? (Fixed-point methods)
• Generate witness states
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