
Speed-ups for Quantum
Algorithms with Easier Inputs

Shelby Kimmel, Jay-U Chung, Noel Anderson
Middlebury College

Easy vs Hard Instances

ENTRANCE

ENTRANCE

EXIT

EXIT

Path-Detection:

Easier:Harder:

Easy vs Hard Instances: Classically
Ex: Path-Detection
Run search from ENTRANCE for time T (based on size of maze).
• If find EXIT, stop and output YES, otherwise continue
• If after time T don’t find EXIT, output NO

Easy vs Hard Instances: Classically
Ex: Path-Detection
Run search from ENTRANCE for time T (based on size of maze).
• If find EXIT, stop and output YES, otherwise continue
• If after time T don’t find EXIT, output NO

If easier: shorter run time
If harder: longer run time

Easy vs Hard Instances: Classically
Ex: Path-Detection
Run search from ENTRANCE for time T (based on size of maze).
• If find EXIT, stop and output YES, otherwise continue
• If after time T don’t find EXIT, output NO

If easier: shorter run time
If harder: longer run time

Key properties:
1. Can check status mid-algorithm and continue running
2. Witness of completion (if find EXIT, convinced there is a path)

Easy vs Hard Instances: Quantumly

Key properties:
1. Can check status mid-algorithm and continue running
2. Witness of completion (if find EXIT, convinced there is a path)

If easier: shorter run time
If harder: longer run time

Run search from ENTRANCE for time T (based on size of maze).
• If find EXIT, stop and output YES, otherwise continue
• If after time T don’t find EXIT, output NO

Our Result

For a large class of quantum algorithms that previously used worst-case runtime for
all instances:

Our Result

For a large class of quantum algorithms that previously used worst-case runtime for
all instances:

Create a modified algorithm:
• If worst-case instance: (approximately) previous worst case run time
• If easier instance: shorter run time

Talk Outline
1. Oracle Model
2. Challenges:

a. Can’t check property of algorithm and then continue running
i. Why challenge exists quantumly
ii. How to overcome

b. (Frequently) No (easily accessible) witness of completion
i. Why challenge exists quantumly
ii. How to overcome

3. Applications & Future Work

Easy

Harder

Oracle Model
Given:
• Description of a Boolean function 𝑓
• Set 𝑋 of possible instances

Design an algorithm to
decide any instance in 𝑋

Oracle Model
Given:
• Description of a Boolean function 𝑓
• Set 𝑋 of possible instances

Is there a path?

Graph/maze

Design an algorithm to
decide any instance in 𝑋

Oracle Model

𝑂!

Given:
• Description of a Boolean function 𝑓
• Set 𝑋 of possible instances

Input
𝑂! for specific instance 𝑥 ∈ 𝑋

𝑖 𝑥!

Output:
𝑓(𝑥), using as few queries
as possible
…in worst case
…while using fewer queries
on easier instances

Design an algorithm to
decide any instance in 𝑋

Oracle Model

1

2

3

4

5
6

7

8

START

END

𝑂!7 ?

Oracle Model

1

2

3

4

6

7

8

START

END

𝑂!7 1

5

Oracle Model

1

2

3

4

6

7

8

START

END

𝑂!3 ?

5

Oracle Model

1

2

3

4

6

7

8

START

END

𝑂!3 0

5

Quantum Oracle Model

𝑂!

Given:
• Description of a Boolean function 𝑓
• Set 𝑋 of possible instances

Input
𝑂! for specific instance 𝑥 ∈ 𝑋

Output:
𝑓(𝑥), using as few queries as
possible
…in worst case
…while using fewer queries on
easier instances

of queries – “runtime” – query
complexity

Design an quantum
algorithm to decide any
instance in 𝑋

𝑖 |0⟩ 𝑖 |𝑥!⟩

Talk Outline
1. Oracle Model
2. Challenges:

a. Can’t check property of algorithm and then continue running
i. Why challenge exists quantumly
ii. How to overcome

b. (Frequently) No (easily accessible) witness of completion
i. Why challenge exists quantumly
ii. How to overcome

3. Applications & Future Work

Easy

Harder

If … Continue

If … Continue
Classically: Can check property of algorithm and then continue running

Quantumly: to check property, need to measure
• Measurement → collapse
• Can’t continue

If … Continue

Time until
measurement

Run

2
4

8

𝑇

1 2 3 log 𝑇

⋯

⋯

If … Continue

Time until
measurement

Run

2
4

8

𝑇

1 2 3 log 𝑇

⋯

⋯

Total Runtime:
𝑂 𝑇

(Geometric series)

If … Continue

Time until
measurement

Run

2
4

8

𝑇

1 2 3 log 𝑇

⋯

⋯

Total Runtime:
𝑂 𝑇

(Geometric series)

Runtime with Error
Reduction:

-𝑂 𝑇

Talk Outline
1. Oracle Model
2. Challenges:

a. Can’t check property of algorithm and then continue running
i. Why challenge exists quantumly
ii. How to overcome

b. (Frequently) No (easily accessible) witness of completion
i. Why challenge exists quantumly
ii. How to overcome

3. Applications & Future Work

Easy

Harder

High Level Problem: Witness is a Hard to
Characterize Quantum State

Yes Instance, run long enough: 𝑌𝐸𝑆 |𝑤𝑖𝑡𝑛𝑒𝑠𝑠⟩

1

2

3

4

56

7

8

START

END

𝑤𝑖𝑡𝑛𝑒𝑠𝑠 = 1 + 3 + 6 + 7 + |8⟩

High Level Problem: Witness is a Hard to
Characterize Quantum State

1

2

3

4

56

7

8

START

END

𝑢𝑛𝑐𝑜𝑛𝑣𝑖𝑛𝑐𝑖𝑛𝑔 𝑤𝑖𝑡𝑛𝑒𝑠𝑠 = 1 − 3 + 6 − 8

No Instance, not run long enough: 𝑌𝐸𝑆 |𝑢𝑛𝑐𝑜𝑛𝑣𝑖𝑛𝑐𝑖𝑛𝑔 𝑤𝑖𝑡𝑛𝑒𝑠𝑠⟩

False positive

Talk Outline
1. Oracle Model
2. Challenges:

a. Can’t check property of algorithm and then continue running
i. Why challenge exists quantumly
ii. How to overcome

b. (Frequently) No (easily accessible) witness of completion
i. Why challenge exists quantumly
ii. How to overcome – avoid dealing with witness states

3. Applications & Future Work

Easy

Harder

Our Result

For a large class of quantum algorithms that previously used worst-case runtime for
all instances:

Span program algorithms

Create a modified algorithm:
• If worst-case instance: (approximately) previous worst case run time
• If easier instance: shorter run time

Span Program Algorithms

∀ functions, ∃ span program:
• Query optimal for worst-case (hardest) inputs
• Not known how to get a speed-up for easier instances*

*If don’t know ahead of time that instance is easy

..

..

.

..

..

.

..

..

.
⋯

Encodes 𝑓 on domain 𝑋

Quantum Query
algorithm for 𝑓 on
domain 𝑋

(See Reichardt 2010 https://arxiv.org/pdf/1005.1601.pdf)

https://arxiv.org/pdf/1005.1601.pdf

Phase Estimation
Key procedure for span program algorithm

Input:
• Unitary 𝑈
• Eigenstate 𝜓 , s.t 𝑈 𝜓 = 𝑒$%&' 𝜓
• Precision 𝜃

Output: | L𝜆| (approximation of 𝜆 to precision 𝜃),

(See Reichardt 2010 https://arxiv.org/pdf/1005.1601.pdf for 3 different algorithms!)

https://arxiv.org/pdf/1005.1601.pdf

Phase Estimation

0
1/𝜃

𝜋⋯

2/𝜃
3/𝜃
4/𝜃Phase

𝜆

5/𝜃

𝜓 Eigenphase

Phase Estimation

0
1/𝜃

𝜋⋯

2/𝜃
3/𝜃
4/𝜃

0
1/𝜃

⋯
2/𝜃
3/𝜃
4/𝜃Phase

𝜆

5/𝜃

𝜋

5/𝜃

Phase Estimation
Outcome Probability𝜓 Eigenphase

Phase Estimation for Span Programs

Span program for 𝑓 on 𝑋 → ∃ unitary 𝑈 (created using 𝑂!), state 𝜓 𝑠. 𝑡. ∀𝑥 ∈ 𝑋:

Phase Estimation for Span Programs

Span program for 𝑓 on 𝑋 → ∃ unitary 𝑈 (created using 𝑂!), state 𝜓 𝑠. 𝑡. ∀𝑥 ∈ 𝑋:
• If 𝑓 𝑥 = 𝑌𝐸𝑆,
• Output phase is 0 w.h.p

• If 𝑓 𝑥 = 𝑁𝑂
• Output phase is not 0 w.h.p, if use large enough 𝜃 (precision)

Phase Estimation for Span Programs

Span program for 𝑓 on 𝑋 → ∃ unitary 𝑈 (created using 𝑂!), state 𝜓 𝑠. 𝑡. ∀𝑥 ∈ 𝑋:
• If 𝑓 𝑥 = 𝑌𝐸𝑆,
• Output phase is 0 w.h.p

• If 𝑓 𝑥 = 𝑁𝑂
• Output phase is not 0 w.h.p, if use large enough 𝜃 (precision)

Larger 𝜃 Longer
runtime

Reduce Precision (𝜃)

0
1/𝜃

𝜋⋯

2/𝜃
3/𝜃
4/𝜃

𝜆

Phase 5/𝜃

Case 0:
• YES INSTANCE
• Any precision

YES Instance:
Want high
probability of
outcome 0

𝜓 Eigenphase

0
1/𝜃

⋯
2/𝜃
3/𝜃
4/𝜃

𝜋

5/𝜃

Phase estimation
Outcome Probability

Reduce Precision (𝜃)

0
1/𝜃

𝜋⋯

2/𝜃
3/𝜃
4/𝜃

𝜆

Phase 5/𝜃

Case 1:
• HARD NO

INSTANCE
• Large 𝜽:

NO Instance:
Want low
probability of
outcome 0

𝜓 Eigenphase

Reduce Precision (𝜃)

0
1/𝜃

𝜋⋯

2/𝜃
3/𝜃
4/𝜃

𝜆
0

1/𝜃
⋯

2/𝜃
3/𝜃
4/𝜃Phase 5/𝜃

𝜋

5/𝜃

Phase estimation
Outcome Probability

Case 1:
• HARD NO

INSTANCE
• Large 𝜽:

NO Instance:
Want low
probability of
outcome 0

𝜓 Eigenphase

Reduce Precision (𝜃)

𝜋⋯

𝜆
⋯

Phase

𝜋

Phase estimation
Outcome Probability

Case 2:
• HARD NO

INSTANCE
• Reduced 𝜽:

NO Instance:
Want low
probability of
outcome 0

0

1/𝜃′

2/𝜃′

0

1/𝜃′

2/𝜃′

𝜓 Eigenphase

𝜓 Eigenphase

Reduce Precision (𝜃)

𝜋⋯

𝜆
⋯

Phase

𝜋

Phase estimation
Outcome Probability

Case 2:
• HARD NO

INSTANCE
• Reduced 𝜽:

NO Instance:
Want low
probability of
outcome 0

0

1/𝜃′

2/𝜃′

0

1/𝜃′

2/𝜃′

Conclusion: If get phase 0 with
low precision, might be false

YES

Reduce Precision (𝜃)

𝜋⋯ ⋯
Phase

𝜋

Phase estimation
Outcome Probability

Case 3:
• Easy NO

INSTANCE
• Reduced 𝜽:

NO Instance:
Want low
probability of
outcome 0

0

1/𝜃′

2/𝜃′

0

1/𝜃′

2/𝜃′
𝜆

𝜓 Eigenphase

𝜓 Eigenphase

Reduce Precision (𝜃)

𝜋⋯ ⋯
Phase

𝜋

Phase estimation
Outcome Probability

Case 3:
• Easy NO

INSTANCE
• Reduced 𝜽:

NO Instance:
Want low
probability of
outcome 0

0

1/𝜃′

2/𝜃′

0

1/𝜃′

2/𝜃′
𝜆

Conclusion: If get non-0 phase
with low precision, confident

NO

Reduce Precision (𝜃)

• Run span program phase estimation algorithm with exponentially
increasing precision 𝜃 until reach precision of original algorithm
Ø If get 0 phase at any repetition, continue
Ø If get non-0 phase at any repetition, stop and output NO

Result: faster runtime for easy NO instances

Easy Yes Instances?

Design negation procedure to produce a span program where YES/NO
instances are exchanged.

Result: Formerly easy YES instances become easy NO instance

All Together

Run with exponentially increasing precision:
• Span program phase estimation algorithm

Ø If get non-0 phase at any repetition, stop and output NO
• Negated span program phase estimation algorithm

Ø If get non-0 phase at any repetition, stop and output YES

Result:
• faster runtime for easy YES and NO instances
• Geometric scaling increases worst-case runtime by only log factor

All Together

Run with exponentially increasing precision:
• Span program phase estimation algorithm

Ø If get non-0 phase at any repetition, stop and output NO
• Negated span program phase estimation algorithm

Ø If get non-0 phase at any repetition, stop and output YES

Result:
• faster runtime for easy YES and NO instances
• Geometric scaling increases worst-case runtime by only log factor

*Not exactly our algorithm :D

Performance
Given a span program, each instance 𝑥 ∈ 𝑋 has a witness size 𝑤 𝑥 .

Original span program algorithm query complexity:

𝑂 max
!∈):+ ! ,-./

𝑤 𝑥 max
!∈)∶+ ! ,12

𝑤 𝑥

Performance
Given a span program, each instance 𝑥 ∈ 𝑋 has a witness size 𝑤 𝑥 .

Original span program algorithm query complexity:

𝑂 max
!∈):+ ! ,-./

𝑤 𝑥 max
!∈)∶+ ! ,12

𝑤 𝑥

Our query complexity:
• If input instance 𝑥′ is YES:

-𝑂 𝑤(𝑥3) max
!∈)∶+ ! ,12

𝑤 𝑥

• If input instance 𝑥3 is NO

-𝑂 𝑤(𝑥3) max
!∈)∶+ ! ,-./

𝑤 𝑥

Talk Outline
1. Oracle Model
2. Challenges:

a. Can’t check property of algorithm and then continue running
i. Why challenge exists quantumly
ii. How to overcome

b. (Frequently) No (easily accessible) witness of completion
i. Why challenge exists quantumly
ii. How to overcome

3. Applications & Future Work

Easy

Harder

Applications

Frequently: witness size 𝑤 𝑥 is related to natural difficulty measures

Applications

Frequently: witness size 𝑤 𝑥 is related to natural difficulty measures
• For path detection
• YES: 𝑤 𝑥 < length of shortest path
• NO: 𝑤 𝑥 < size of smallest cut

[Belovs and Reichardt ‘12, Jarret,
Jeffery, SK, Piedrafita ’19]

Applications

Frequently: witness size 𝑤 𝑥 is related to natural difficulty measures
• For path detection
• YES: 𝑤 𝑥 < length of shortest path
• NO: 𝑤 𝑥 < size of smallest cut

• For total connectivity
• YES: 𝑤 𝑥 < average effective resistance
• NO: 𝑤 𝑥 < 1/(number of components)

[Belovs and Reichardt ‘12, Jarret,
Jeffery, SK, Piedrafita ’19]

[Jarret, Jeffery, SK, Piedrafita ’19]

Applications

Frequently: witness size 𝑤 𝑥 is related to natural difficulty measures
• For path detection
• YES: 𝑤 𝑥 < length of shortest path
• NO: 𝑤 𝑥 < size of smallest cut

• For total connectivity
• YES: 𝑤 𝑥 < average effective resistance
• NO: 𝑤 𝑥 < 1/(number of components)

• For cycle finding
• YES: 𝑤 𝑥 =1/(cycle rank)
• NO: 𝑤 𝑥 < no. of edges

[Belovs and Reichardt ‘12, Jarret,
Jeffery, SK, Piedrafita ’19]

[Jarret, Jeffery, SK, Piedrafita ’19]

[DeLorenzo, SK, Witter ’20]

Applications

Frequently: witness size 𝑤 𝑥 is related to natural difficulty measures
• For path detection
• YES: 𝑤 𝑥 < length of shortest path
• NO: 𝑤 𝑥 < size of smallest cut

• For total connectivity
• YES: 𝑤 𝑥 < average effective resistance
• NO: 𝑤 𝑥 < 1/(number of components)

• For cycle finding
• YES: 𝑤 𝑥 =1/(cycle rank)
• NO: 𝑤 𝑥 < no. of edges

• For search
• YES: 𝑤 𝑥 = no. of marked items

[Belovs and Reichardt ‘12, Jarret,
Jeffery, SK, Piedrafita ’19]

[Jarret, Jeffery, SK, Piedrafita ’19]

[DeLorenzo, SK, Witter ’20]

State generation extension
State Generation Problem:
Convert |𝜌!⟩ to |𝜎!⟩ given access to 𝑂!.

There is a span program-like algorithm that is nearly optimal for worst-case 𝑥.
Running faster on easier inputs?

Challenge:
Original algorithm has no measurements!

Our Result:
Use an auxiliary test to determine when can stop running.

Future Work

• Get rid of log factors from error suppression? (Fixed-point methods)
• Opportunities for average case quantum vs. classical speed-ups
• Faster algorithms for producing witness states for easy instances
• Better error parameters for state generation
• Use these ideas to speed up non-span program algorithms on easy

inputs

https://arxiv.org/pdf/2012.01276.pdf

Thank you!

Jay-U
Chung

Noel
Anderson

