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hings Quantum Computers are Good at:

* Factoring
— Exponential speed-up over known classical algorithms
— Can be used to break most commonly used public key crypto
systems
* Simulating chemistry
— Exponential speed-up over known classical algorithms
— Useful for drug development, better carbon sequestration
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“How will a quantum computer help me
do X7?”

* Need quantum algorithmic primitives
|. Apply to a wide range of problems
2. Easy to understand and analyze (without knowing
quantum mechanics)

— Ex: Searching unordered list of n items
— Classically, takes O(n) time
— Quantumly, takes O (y/n) time

* New primitive: st-connectivity




Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive
|. Applies to a wide range of problems

2. Easy to understand (without knowing quantum mechanics)




st-connectivity

st — connectivity:
is there a path from s to t?




st-connectivity

st — connectivity: ./ [

is there a path from s to t?
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Figure of Merit

* Query Complexity
—  Number of uses (queries) of the black box
—  All other operations are free
—  Always a lower bound on time complexity (situation when other
operations are not free)
—  Often (but not always) a good proxy for time complexity

* Under mild assumption, for our algorithm,
quantum query complexity = quantum time complexity

* In query model it is easier to prove
— Quantum-to-classical speed-ups
— Optimality
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Boolean Formulas
@AND: outputs 1 if all inputs are 1 f(X)

@ OR: outputs 1 if any input is 1 Q
Value O or 1 m
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Read-once: x;’s not fan out




Boolean Formulas

Read-once: x;’s not fan out

Read-many: x; have fan out Q




Boolean Formula Applications

* Logic

* Designing electrical circuits

* Game theory (deciding who will win a game)

* Combinatorics and graph problems

* Linear programming

 Testing potential solution to an NP-complete problem




Application to Boolean Formulas

@AND: outputs 1 if all input

subformulas have value 1
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Application to Boolean Formulas

@AND: outputs 1 if all input @ OR: outputs 1 if any input

subformulas have value 1 subformulas have value 1
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Application to Boolean Formulas
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Application to Boolean Formulas

* If we put edges where
x; =1,sand t are
connected iff f(x) = 1!

f(x)




Application to Boolean Formulas




Application to Boolean Formulas




Outline:

A. Introduction to Quantum Algorithms and st-connectivity
B. st-connectivity makes a good algorithmic primitive
|. Applies to a wide range of problems
* Evaluating Boolean formulas reduces to st-connectivity
2. Easy to understand (without knowing quantum mechanics)




Planar Graph

Planar Not Planar
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Planar Graph including (s,t) Edge

Can add an edge from s to t and graph is still planar

YES

‘.




Planar Graph including (s,t) Edge

Can add an edge from s to t and graph is still planar

Graph created
during reduction
from Boolean
formula problem
has this property
by construction.
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Effective Resistance

Valid flow:

1l unitinats

1 unitoutat ¢

At all other nodes, zero net
flow

1 unit of flow

0 unit
of flow

1 unit of flow



Effective Resistance

Flow energy:

Z (flow on edge)?

edges

1 unit of flow
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Effective Resistance

Flow energy: 0 unit
of flow
z (flow on edge)?
edges f unit o /’
flow I/
Effective Resistance: R + (G) X
Smallest energy of any valid flow from s /

tot onG.

1 unit of flow




Effective Resistance

Flow energy: Y
of flow
z (flow on edge)?
edges f unito ,’
Effective Resistance: R+ (G) flow /

Smallest energy of any valid flow from s
totonG.

Properties of R+ (G)

* Small if many short paths from s to t
* Large if few long paths from s to ¢

* Infinite if s and t not connected

1 unit of flow




Algorithm Performance:

Planar graphJr st-connectivity algorithm complexity =

0, max R..(G max R (G’
GeEH:connected S’t( ) GeH:not connected S’t( )

Twith (s, t) added also planar
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Graph G’
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Graph G’
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Graph G’

* If an edge is not
present in G, it is
present in G’




Graph G’

* If there is an st-path,
there is no s't’-path.

* If there is an s’t’-path,
there is no st-path.




Algorithm Performance:

Planar graphJr st-connectivity algorithm complexity =

0, max R..(G max R (G’
GeEH:connected S’t( ) GeH:not connected S’t( )

Twith (s, t) added also planar



Example

What is quantum complexity of deciding
AND (x4, x5, ..., Xy), promised
* Allx; =1,0r

At least VN input variables are 0.




Example

What is quantum complexity of deciding
AND (x4, x5, ..., Xy), promised

* Allx; =1,0r

At least VN input variables are 0.
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Example

What is quantum complexity of deciding if
e s andt are connected, or

* At least VN edges are missing
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Example
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What is quantum complexity of deciding if
S and t are connected, or

* At least VN edges are missing

|

max
GEH :connected

R (G) J

max
GEH :not connected

R1e/(G')



Example

What is quantum complexity of deciding if
1 . e Sandt are connected, or
— unit

VN * At least VN edges are missing
of flow

\/ max R, +(G) J max Ry, +/(G")

GEH :connected GEH :not connected
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What is quantum complexity of deciding if
e s andt are connected, or

* At least VN edges are missing

max Rg (G max R G’
\/Ge}[:connected S’t( ) \/Ge}[:notconnected S”t'( )
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Quantum complexity is O(N*/*)
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Algorithm Performance:

Planar graphJr st-connectivity algorithm complexity =

0 <\/ max Rs.:(G,w) \[ max Rsrltr(G’,W‘l))

GEH :connected GEH :mot connected

Twith (s, t) added also planar



Performance

* Improvement over previous quantum st —connectivity algorithm
— Find a family of graphs with N edges such that our algorithm uses

0(1) queries, previous best algorithm uses O(N'/*) queries
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Performance

* Improvement over previous quantum st —connectivity algorithm
— Find a family of graphs with N edges such that our algorithm uses

0(1) queries, previous best algorithm uses O(N'/*) queries

— Balloon graph: our algorithm uses O(Nl/z) queries, previous best
algorithm uses O(N) queries
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— Series-parallel graphs, our algorithm uses O(N/?) queries,
previous best algorithm uses O(N) queries



Performance

¢ Comparison to previous Boolean formula algorithm
— Match celebrated result that O(W) queries required for total

read-once Boolean formulas, but proof is simple!

— Extend super-polynomial quantum to classical speed-up for
families of NAND-trees [ZKH’ 12, K’ 1 3]




Update

Non-planar st-connectivity algorithm complexity =

0 <\[ max Rs.(G,w) \[ max Cs:(G", W))

GEH :connected GEH :mot connected

Effective capacitance




Update




Update




Open Questions

* When is our algorithm optimal for Boolean formulas? (Especially
partial/read-many formulas)

* Are there other problems that reduce to st-connectivity?

* What is the classical time/query complexity of st-connectivity in the
black box model?

* Does our reduction from formulas to connectivity give good classical
algorithms too!?

* Can we use this graph dual idea to improve other quantum
algorithms!?

arXiv:1704.00765, with Stacey Jeffery




Other interests

* Statistical inference and machine learning applied to quantum
characterization problems
* Quantum complexity theory, especially quantum versions of NP




Boolean Formulas
@AND: outputs 1 if all inputs are 1 f(X)

@ OR: outputs 1 if any input is 1 Q
Value O or 1 m




Boolean Formulas
@AND: outputs 1 if all inputs are 1 f(X)

@ OR: outputs 1 if any input is 1 Q
Value O or 1
,




Boolean Formulas
@AND: outputs 1 if all inputs are 1 f(X)
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Boolean Formulas
@AND:outputs 1 if all inputs are 1 f(x) =1

@ OR: outputs 1 if any input is 1 1 Q
Value O or 1 m




