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Things Quantum Computers are Good at:

• Factoring

– Exponential speed-up over known classical algorithms

– Can be used to break most commonly used public key crypto 

systems

• Simulating chemistry

– Exponential speed-up over known classical algorithms

– Useful for drug development, better carbon sequestration
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“How will a quantum computer help me 

do X?”

• Need quantum algorithmic primitives

1. Apply to a wide range of problems

2. Easy to understand and analyze (without knowing 

quantum mechanics)

– Ex: Searching unordered list of 𝑛 items

– Classically, takes 𝑂(𝑛) time

– Quantumly, takes 𝑂( 𝑛) time

• New primitive: 𝒔𝒕-connectivity



Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

2. Easy to understand (without knowing quantum mechanics)



𝑠𝑡-connectivity

𝑠

𝑡

𝒔𝒕 − 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚:
is there a path from 𝑠 to 𝑡?



𝑠𝑡-connectivity

𝑠

𝑡

𝒔𝒕 − 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚:
is there a path from 𝑠 to 𝑡?



Black Box Model

𝐺𝑖 𝑒𝑖

Edge 

label

• 𝑒𝑖 = 1 if 𝑖𝑡ℎ edge is 

there

• 𝑒𝑖 = 0 if edge is not 

there

2

4 5

6

7

1

3

𝑠

𝑡Let ℋ be the set of graphs 𝐺 that the 

black box might contain.



Figure of Merit

• Query Complexity

– Number of uses (queries) of the black box

– All other operations are free

– Always a lower bound on time complexity (situation when other 

operations are not free)

– Often (but not always) a good proxy for time complexity

• Under mild assumption, for our algorithm, 

quantum query complexity ≅ quantum time complexity 

• In query model it is easier to prove

– Quantum-to-classical speed-ups

– Optimality
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A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

• Evaluating Boolean formulas reduces to st-connectivity

2. Easy to understand (without knowing quantum mechanics)



Boolean Formulas
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𝑥10

𝑥1 𝑥2 𝑥3 𝑥4

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

⋀ 𝐴𝑁𝐷: outputs 1 if all inputs are 1

⋁ 𝑂𝑅: outputs 1 if any input is 1

𝑥𝑖 Value 0 or 1

𝑓(𝑥)
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Boolean Formulas
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𝑥10

𝑥1 𝑥2 𝑥3 𝑥4

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

𝑓(𝑥)

Read-many: 𝑥𝑖 have fan out

Read-once: 𝑥𝑖 ’s not fan out



Boolean Formula Applications

• Logic

• Designing electrical circuits

• Game theory (deciding who will win a game)

• Combinatorics and graph problems

• Linear programming

• Testing potential solution to an NP-complete problem



Application to Boolean Formulas
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Outline:

A. Introduction to Quantum Algorithms and st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

• Evaluating Boolean formulas reduces to st-connectivity

2. Easy to understand (without knowing quantum mechanics)



Planar Graph

Planar Not Planar



Planar Graph including (𝒔, 𝒕) Edge

𝑠

𝑡

Can add an edge from 𝑠 to 𝑡 and graph is still planar

YES



Planar Graph including (𝒔, 𝒕) Edge

Can add an edge from 𝑠 to 𝑡 and graph is still planar

𝑥10

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝒔

𝒕

Graph created 

during reduction 

from Boolean 

formula problem 

has this property 

by construction.
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Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of flow

Valid flow:

• 1 unit in at 𝑠
• 1 unit out at 𝑡
• At all other nodes, zero net 

flow

1 unit 

of flow

1 unit 

of flow

𝑓 unit of 

flow 1 − 𝑓
unit of 

flow

0 unit 

of flow



Effective Resistance

𝑠
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Flow energy:
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Effective Resistance: 𝑅𝑠,𝑡(𝐺)

Smallest energy of any valid flow from 𝑠
to 𝑡 on 𝐺.
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Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of flow

1 unit 

of flow

1 unit 

of flow

Flow energy:

 

𝑒𝑑𝑔𝑒𝑠

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 2

Effective Resistance: 𝑅𝑠,𝑡(𝐺)

Smallest energy of any valid flow from 𝑠
to 𝑡 on 𝐺.

Properties of 𝑅𝑠,𝑡(𝐺)

• Small if many short paths from 𝑠 to 𝑡
• Large if few long paths from 𝑠 to 𝑡
• Infinite if 𝑠 and 𝑡 not connected

0 unit 

of flow

𝑓 unit of 

flow 1 − 𝑓
unit of 

flow



Algorithm Performance:

Planar graph† st-connectivity algorithm complexity = 

𝑂 max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡 𝐺 max
𝐺∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠′,𝑡′ 𝐺
′

† with 𝑠, 𝑡 added also planar



Graph 𝐺′

𝑠

𝑡

2

4

5

6

7

1

3



Graph 𝐺′

𝑠

𝑡

2

4

5

6

7

1

3𝑠′
𝑡′



Graph 𝐺′
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Graph 𝐺′
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Graph 𝐺′

𝑠

𝑡′

𝑠′

𝑡

• If an edge is not 

present in 𝐺, it is 
present in 𝐺’ 2

4

5

6

7

1

3

𝐺′



Graph 𝐺′

𝑠

𝑡′

𝑠′

𝑡

• If there is an 𝑠𝑡-path, 

there is no 𝑠’𝑡’-path.

• If there is an 𝑠’𝑡’-path,

there is no 𝑠𝑡-path.
2

4

5

6

7

1

3

𝐺′



Algorithm Performance:

Planar graph† st-connectivity algorithm complexity = 

𝑂 max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡 𝐺 max
𝐺∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠′,𝑡′ 𝐺
′

† with 𝑠, 𝑡 added also planar



Example
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𝐴𝑁𝐷 𝑥1, 𝑥2, … , 𝑥𝑁 , promised

• All 𝑥𝑖 = 1, or

• At least 𝑁 input variables are 0.
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What is quantum complexity of deciding 

𝐴𝑁𝐷 𝑥1, 𝑥2, … , 𝑥𝑁 , promised

• All 𝑥𝑖 = 1, or

• At least 𝑁 input variables are 0.

What is quantum complexity of deciding if 
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• At least 𝑁 edges are missing
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Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if 

• 𝑠 and 𝑡 are connected, or 

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡 𝐺 = 𝑁
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of flow
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of flow
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of flow
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What is quantum complexity of deciding if 

• 𝑠 and 𝑡 are connected, or 

• At least 𝑁 edges are missing

max
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𝑁

max
𝐺∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡 𝐺
′ = 1/ 𝑁

𝑠′𝑡’

What is quantum complexity of deciding if 

• 𝑠 and 𝑡 are connected, or 

• At least 𝑁 edges are missing
1

𝑁
unit 

of flow

1

𝑁
unit 

of flow
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𝑠
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𝑡

𝑠′𝑡’

What is quantum complexity of deciding if 

• 𝑠 and 𝑡 are connected, or 

• At least 𝑁 edges are missing

Quantum complexity is 𝑂 𝑁1/4

1/ 𝑁𝑁
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Example 

𝑠

𝑁

𝑡

𝑠′𝑡’

What is quantum complexity of deciding if 

• 𝑠 and 𝑡 are connected, or 

• At least 𝑁 edges are missing

Quantum complexity is 𝑂 𝑁1/4

1/ 𝑁𝑁

Randomized classical complexity is Ω 𝑁1/2

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠′,𝑡′(𝐺′)



Algorithm Performance:

Planar graph† st-connectivity algorithm complexity = 

𝑂 max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡 𝐺,𝑤 max
𝐺∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠′,𝑡′ 𝐺
′, 𝑤−1

† with 𝑠, 𝑡 added also planar



Performance

• Improvement over previous quantum 𝑠𝑡 −connectivity algorithm

– Find a family of graphs with 𝑁 edges such that our algorithm uses 

𝑂 1 queries, previous best algorithm uses 𝑂 𝑁1/4 queries
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Performance

• Improvement over previous quantum 𝑠𝑡 −connectivity algorithm

– Find a family of graphs with 𝑁 edges such that our algorithm uses 

𝑂 1 queries, previous best algorithm uses 𝑂 𝑁1/4 queries

– Balloon graph: our algorithm uses 𝑂 𝑁1/2 queries, previous best 

algorithm uses 𝑂 𝑁 queries

– Series-parallel graphs, our algorithm uses 𝑂 𝑁1/2 queries, 

previous best algorithm uses 𝑂 𝑁 queries

𝑁

𝑁



Performance

• Comparison to previous Boolean formula algorithm

– Match celebrated result that 𝑂 𝑁 queries required for total 

read-once Boolean formulas, but proof is simple!

– Extend super-polynomial quantum to classical speed-up for 

families of NAND-trees [ZKH’12, K’13]



Update 

Non-planar st-connectivity algorithm complexity = 

𝑂 max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡 𝐺,𝑤 max
𝐺∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡 𝐺′′, 𝑤

Effective capacitance
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Update 

𝑡
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4
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7

1

3

5

𝐺′′



Open Questions

• When is our algorithm optimal for Boolean formulas? (Especially 

partial/read-many formulas)

• Are there other problems that reduce to st-connectivity?

• What is the classical time/query complexity of st-connectivity in the 

black box model?

• Does our reduction from formulas to connectivity give good classical 

algorithms too?

• Can we use this graph dual idea to improve other quantum 

algorithms?

arXiv:1704.00765, with Stacey Jeffery



Other interests

• Statistical inference and machine learning applied to quantum 

characterization problems

• Quantum complexity theory, especially quantum versions of NP
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⋀ ⋀ ⋀

⋁ ⋁

1

0 𝑥2 1 1

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

⋀ 𝐴𝑁𝐷: outputs 1 if all inputs are 1

⋁ 𝑂𝑅: outputs 1 if any input is 1

𝑥1 Value 0 or 1

𝑓 𝑥 = 1

0
1

1


