
Path Detection:
A Quantum Computing Primitive

Shelby Kimmel

Middlebury College

Based on work with

Stacey Jeffery: arXiv: 1704.00765 (Quantum vol 1 p 26)

Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, in progress

How to make quantum algorithms accessible?

How to make quantum algorithms accessible?

• Need quantum algorithmic primitives

How to make quantum algorithms accessible?

• Need quantum algorithmic primitives

1. Apply to a wide range of problems

2. Easy to understand and analyze (without knowing

quantum mechanics)

How to make quantum algorithms accessible?

• Need quantum algorithmic primitives

1. Apply to a wide range of problems

2. Easy to understand and analyze (without knowing

quantum mechanics)

– Ex: Searching unordered list of 𝑛 items

– Classically, takes Ω(𝑛) time

– Quantumly, takes 𝑂(𝑛) time

How to make quantum algorithms accessible?

• Need quantum algorithmic primitives

1. Apply to a wide range of problems

2. Easy to understand and analyze (without knowing

quantum mechanics)

– Ex: Searching unordered list of 𝑛 items

– Classically, takes Ω(𝑛) time

– Quantumly, takes 𝑂(𝑛) time

• New primitive: 𝒔𝒕-connectivity

Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

2. Easy to understand (without knowing quantum mechanics)

C. Applications and performance of algorithm

𝑠𝑡-connectivity

𝑠

𝑡

𝒔𝒕 − 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚:
is there a path from 𝑠 to 𝑡?

𝑠𝑡-connectivity

𝑠

𝑡

𝒔𝒕 − 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚:
is there a path from 𝑠 to 𝑡?

Black Box Model

𝑖 𝑒𝑖

Edge

label

• 𝑒𝑖 = 1 if 𝑖𝑡ℎ edge is

there

• 𝑒𝑖 = 0 if edge is not

there

2

4 5

6

7

1

3

𝑠

𝑡Let ℋ be the set of graphs 𝐺 that the

black box might contain.

Figure of Merit

• Query Complexity

– Number of uses (queries) of the black box

– All other operations are free

• Under mild assumption, for our algorithm,

quantum query complexity ≅ quantum time complexity

Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

2. Easy to understand (without knowing quantum mechanics)

C. Applications and performance of algorithm

Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

• Evaluating Boolean formulas reduces to st-connectivity

2. Easy to understand (without knowing quantum mechanics)

C. Applications and performance of algorithm

Boolean Formulas

⋀ 𝐴𝑁𝐷: outputs 1 if all inputs are 1

⋁ 𝑂𝑅: outputs 1 if any input is 1

𝑥𝑖 Value 0 or 1

𝑓(𝑥)

Boolean Formulas
𝑓(𝑥)

𝑖 𝑥𝑖

Input

label

Boolean Formulas
𝑓(𝑥)

Read-once: 𝑥𝑖’s not fan out

Boolean Formulas
𝑓(𝑥)

Read-many: 𝑥𝑖 have fan out

Read-once: 𝑥𝑖’s not fan out

Boolean Formula Applications

• Logic

• Designing electrical circuits

• Game theory (deciding who will win a game)

• Combinatorics and graph problems

• Linear programming

• Testing potential solution to an NP-complete problem

Application to Boolean Formulas

⋀ 𝐴𝑁𝐷: outputs 1 if all input

subformulas have value 1

𝒔

𝒕

𝑠 and 𝑡 are

connected if all

subgraphs are

connected

Application to Boolean Formulas

⋀ ⋁ 𝑂𝑅: outputs 1 if any input

subformulas have value 1

𝒔

𝒕

𝒔

𝒕

𝑠 and 𝑡 are

connected if all

subgraphs are

connected

𝑠 and 𝑡 are

connected if any

subgraph is

connected

𝐴𝑁𝐷: outputs 1 if all input

subformulas have value 1

Application to Boolean Formulas

𝑥10

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝒔

𝒕

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥10

𝑥1 𝑥2 𝑥3 𝑥4

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

𝑓(𝑥)

Application to Boolean Formulas

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥10

𝑥1 𝑥2 𝑥3 𝑥4

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

𝑓(𝑥)

1

0 0 1 0

0 1 0 1 1

• If we put edges where

𝑥𝑖 = 1, 𝑠 and 𝑡 are

connected iff 𝑓 𝑥 = 1!

𝑥10

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝒔

𝒕

Application to Boolean Formulas

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥10

𝑥1 𝑥2 𝑥3 𝑥4

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

𝑓(𝑥)

𝑥10

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝒔

𝒕

Application to Boolean Formulas

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥10

𝑥1 𝑥2 𝑥3 𝑥4

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

𝑓(𝑥)

𝑥10

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝒔

𝒕

Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

• Evaluating Boolean formulas reduces to st-connectivity

2. Easy to understand (without knowing quantum mechanics)

C. Applications and performance of algorithm

Effective Resistance

𝑠

𝑡

Graph 𝐺:

Effective Resistance

𝑠

𝑡

1 unit

resistors

Effective Resistance

𝑠

𝑡

𝑠

𝑡

1 unit

resistors

𝑅𝑠,𝑡(𝐺) unit

resistor

Effective Resistance

𝑠

𝑡

𝑠

𝑡

1 unit

resistors

𝑅𝑠,𝑡(𝐺) unit

resistor

Properties of 𝑅𝑠,𝑡(𝐺)
• Small if many short paths

from 𝑠 to 𝑡
• Large if few long paths from 𝑠

to 𝑡
• Infinite if 𝑠 and 𝑡 not

connected

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of flow

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of flow

Valid flow:

• 1 unit in at 𝑠
• 1 unit out at 𝑡
• At all other nodes, zero net

flow

1 unit

of flow

1 unit

of flow

𝑓 unit of

flow 1 − 𝑓
unit of

flow

0 unit

of flow

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of flow

Flow energy:

෍

𝑒𝑑𝑔𝑒𝑠

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 2

1 unit

of flow

1 unit

of flow

0 unit

of flow

𝑓 unit of

flow 1 − 𝑓
unit of

flow

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of flow

1 unit

of flow

1 unit

of flow

Flow energy:

෍

𝑒𝑑𝑔𝑒𝑠

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 2

Effective Resistance: 𝑅𝑠,𝑡(𝐺)

Smallest energy of any valid flow from 𝑠
to 𝑡 on 𝐺.

0 unit

of flow

𝑓 unit of

flow 1 − 𝑓
unit of

flow

Effective Capacitance

𝑠

𝑡

Graph 𝐺′:

Effective Capacitance

𝑠

𝑡

1 unit

capacitors

0 resistance

wires (short

circuit)

Effective Capacitance

𝑠

𝑡

1 unit

capacitors

0 resistance

wires

𝑠

𝑡

𝐶𝑠,𝑡(𝐺′) unit

capacitor

0 resistance

wires (short

circuit)

Properties of 𝐶𝑠,𝑡(𝐺
′)

• Small if many small cuts

• Large if one large cuts

• Infinite if 𝑠 and 𝑡
connected

Effective Capacitance

𝑠

𝑡

Graph 𝐺′:

Valid potential energy:

• 1 at 𝑠
• 0 at 𝑡
• Potential energy difference

is 0 across edge

Effective Capacitance

𝑠

𝑡

Graph 𝐺′:

Valid potential energy:

• 1 at 𝑠
• 0 at 𝑡
• Potential energy difference

is 0 across edge

1

1 1

0

0

Effective Capacitance

𝑠

𝑡

Graph 𝐺′:
1

1 1

0

0

Cut energy:

෍

𝑒𝑑𝑔𝑒𝑠

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 2

Effective Capacitance: 𝐶𝑠,𝑡(𝐺′)

Smallest cut energy of any valid potential

energy between 𝑠 to 𝑡 on 𝐺’.

Algorithm Performance:

st-connectivity algorithm complexity =

Algorithm Performance:

st-connectivity algorithm complexity =

[Belovs, Reichard, ’12] [JJKP, in progress]

Example

What is quantum complexity of deciding

𝐴𝑁𝐷 𝑥1, 𝑥2,… , 𝑥𝑁 , promised

• All 𝑥𝑖 = 1, or

• At least 𝑁 input variables are 0.

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding

𝐴𝑁𝐷 𝑥1, 𝑥2,… , 𝑥𝑁 , promised

• All 𝑥𝑖 = 1, or

• At least 𝑁 input variables are 0.

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡 𝐺 = 𝑁

1 unit

of flow

1 unit

of flow

1 unit

of flow

1 unit

of flow

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

1

0

0

1 −
1

𝑁

1

𝑁

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

1

0

0

1 −
1

𝑁

1

𝑁
max

𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
𝐶𝑠,𝑡 𝐺

′ = 𝑁 ×
1

𝑁

2

=
1

𝑁

Example

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

Quantum complexity is 𝑂 𝑁1/4

1/ 𝑁𝑁

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠′,𝑡′(𝐺′)

𝑠

𝑡

Example

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

Quantum complexity is 𝑂 𝑁1/4

1/ 𝑁𝑁

Randomized classical complexity is Ω 𝑁1/2

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠′,𝑡′(𝐺′)

𝑠

𝑡

New Example

Connectivity – is every vertex

connected to every other vertex?

2

4 5

6

7

1

3

𝑠

𝑡

New Example

2

4 5

6

7

1

3

𝑠

𝑡

Connectivity – is every vertex

connected to every other vertex?

Connectivity=

𝑠𝑡 − 𝑐𝑜𝑛𝑛 ∧ 𝑠𝑢 − 𝑐𝑜𝑛𝑛 ∧ 𝑢𝑣 − 𝑐𝑜𝑛𝑛 …

New Example 2

4 5

6

7

1
3

𝑠

𝑡

Connectivity – is every vertex

connected to every other vertex?

Connectivity=

𝑠𝑡 − 𝑐𝑜𝑛𝑛 ∧ 𝑠𝑢 − 𝑐𝑜𝑛𝑛 ∧ 𝑢𝑣 − 𝑐𝑜𝑛𝑛 …

New Example 2

4 5

6

7

1
3

𝑠

𝑡

Connectivity – is every vertex

connected to every other vertex?

Results:

• Worst case: 𝑂(𝑛3/2) (𝑛 = # vertices)

• Promised

• YES – diameter is 𝐷
• NO – every connected component

has at most 𝑛∗ vertices

• 𝑂 𝑛𝑛∗𝐷

New Example 2

4 5

6

7

1
3

𝑠

𝑡

Connectivity – is every vertex

connected to every other vertex?

Results:

• Worst case: 𝑂(𝑛3/2) (𝑛 = # vertices)

• Promised

• YES – diameter is 𝐷
• NO – every connected component

has at most 𝐾 vertices

• 𝑂 𝑛𝐾𝐷

(Diameter result previously discovered by

Arins using slightly different approach)

The Algorithm

Span Program

• Span vectors

• Target vector

The input to the problem determines which subset of span vectors are

allowed.

The Algorithm

Span Program

• Span vectors

• Target vector

The input to the problem determines which subset of span vectors are

allowed.

If target vector is in span of the allowed span vectors, then function evaluates

to 1 on that input. Otherwise, evaluates to 0.

Thus span program encodes a function.

The Algorithm

Span Program

• Span vectors

• Target vector

The input to the problem determines which subset of span vectors are

allowed.

If target vector is in span of the allowed span vectors, then function evaluates

to 1 on that input. Otherwise, evaluates to 0.

Thus span program encodes a function.

Infinite number of span programs can encode the same function

Given a span program, can create a quantum algorithm to evaluate the

corresponding function (create a quantum walk whose dispersion operators

are based on the vectors)

The Algorithm

Span Program

• Span vectors

• Target vector

Given a span program, can create a quantum algorithm to evaluate the

corresponding function (create a quantum walk whose dispersion operators

are based on the vectors)

The Algorithm

Span Program

• Span vectors

• Target vector

Given a span program, can create a quantum algorithm to evaluate the

corresponding function (create a quantum walk whose dispersion operators

are based on the vectors)

The efficiency of the span program is a (relatively) simple function of the

vectors.

The Algorithm

Span Program

• Span vectors

• Target vector

Given a span program, can create a quantum algorithm to evaluate the

corresponding function (create a quantum walk whose dispersion operators

are based on the vectors)

The efficiency of the span program is a (relatively) simple function of the

vectors.

There is always a span program algorithm that is optimal (and many that are

not optimal.)

Open Questions and Current Directions

• When is our algorithm optimal for Boolean formulas? (Especially

partial/read-many formulas)

• Are there other problems that reduce to st-connectivity? (Perhaps

all?)

• What is the classical time/query complexity of st-connectivity in the

black box model? Under the promise of small capacitance/resistance?

• Does our reduction from formulas to connectivity give good classical

algorithms too?

• How to choose weights?

