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Black Box Model

𝑖 𝑒𝑖

Edge 

label

• 𝑒𝑖 = 1 if 𝑖𝑡ℎ edge is 

there

• 𝑒𝑖 = 0 if edge is not 

there
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𝑡Let ℋ be the set of graphs 𝐺 that the 

black box might contain.



Figure of Merit

• Query Complexity

– Number of uses (queries) of the black box

– All other operations are free

• Under mild assumption, for our algorithm, 

quantum query complexity ≅ quantum time complexity 



Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

2. Easy to understand (without knowing quantum mechanics)

C. Applications and performance of algorithm



Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

• Evaluating Boolean formulas reduces to st-connectivity

2. Easy to understand (without knowing quantum mechanics)

C. Applications and performance of algorithm



Boolean Formulas

⋀ 𝐴𝑁𝐷: outputs 1 if all inputs are 1
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𝑥𝑖 Value 0 or 1
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𝑓(𝑥)

Read-many: 𝑥𝑖 have fan out

Read-once: 𝑥𝑖’s not fan out



Boolean Formula Applications

• Logic

• Designing electrical circuits

• Game theory (deciding who will win a game)

• Combinatorics and graph problems

• Linear programming

• Testing potential solution to an NP-complete problem
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𝑠

𝑡

𝑠

𝑡

1 unit 

resistors

𝑅𝑠,𝑡(𝐺) unit 

resistor

Properties of 𝑅𝑠,𝑡(𝐺)
• Small if many short paths 

from 𝑠 to 𝑡
• Large if few long paths from 𝑠

to 𝑡
• Infinite if 𝑠 and 𝑡 not 

connected
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𝑠
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Valid flow:

• 1 unit in at 𝑠
• 1 unit out at 𝑡
• At all other nodes, zero net 

flow
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Effective Resistance: 𝑅𝑠,𝑡(𝐺)

Smallest energy of any valid flow from 𝑠
to 𝑡 on 𝐺.
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of flow

𝑓 unit of 
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unit of 
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Effective Capacitance

𝑠

𝑡

1 unit 

capacitors

0 resistance 

wires

𝑠

𝑡

𝐶𝑠,𝑡(𝐺′) unit 

capacitor

0 resistance 

wires (short 

circuit)

Properties of 𝐶𝑠,𝑡(𝐺
′)

• Small if many small cuts 

• Large if one large cuts

• Infinite if 𝑠 and 𝑡
connected
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Valid potential energy:

• 1 at 𝑠
• 0 at 𝑡
• Potential energy difference 

is 0 across edge
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Graph 𝐺′:

Valid potential energy:

• 1 at 𝑠
• 0 at 𝑡
• Potential energy difference 

is 0 across edge
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Effective Capacitance

𝑠

𝑡

Graph 𝐺′:
1

1 1

0

0

Cut energy:

෍

𝑒𝑑𝑔𝑒𝑠

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 2

Effective Capacitance: 𝐶𝑠,𝑡(𝐺′)

Smallest cut energy of any valid potential 

energy between 𝑠 to 𝑡 on 𝐺’.
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[Belovs, Reichard, ’12] [JJKP, in progress]
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𝑠

𝑡

Connectivity – is every vertex 

connected to every other vertex?

Results:

• Worst case: 𝑂(𝑛3/2) (𝑛 = # vertices)

• Promised

• YES – diameter is 𝐷
• NO – every connected component 

has at most 𝐾 vertices

• 𝑂 𝑛𝐾𝐷

(Diameter result previously discovered by 

Arins using slightly different approach)
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The Algorithm

Span Program

• Span vectors

• Target vector

Given a span program, can create a quantum algorithm to evaluate the 

corresponding function (create a quantum walk whose dispersion operators 

are based on the vectors)

The efficiency of the span program is a (relatively) simple function of the 

vectors.

There is always a span program algorithm that is optimal (and many that are 

not optimal.)



Open Questions and Current Directions

• When is our algorithm optimal for Boolean formulas? (Especially 

partial/read-many formulas)

• Are there other problems that reduce to st-connectivity? (Perhaps 

all?)

• What is the classical time/query complexity of st-connectivity in the 

black box model? Under the promise of small capacitance/resistance?

• Does our reduction from formulas to connectivity give good classical 

algorithms too?

• How to choose weights?


