Path Detection: A Quantum Computing Primitive

Shelby Kimmel

Middlebury College

Based on work with
Stacey Jeffery: arXiv: 1704.00765
Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, in progress

Need quantum algorithmic primitives

- Need quantum algorithmic primitives
 - I. Apply to a wide range of problems
 - 2. Easy to understand and analyze (without knowing quantum mechanics)

- Need quantum algorithmic primitives
 - I. Apply to a wide range of problems
 - 2. Easy to understand and analyze (without knowing quantum mechanics)
 - Ex: Searching unordered list of n items
 - Classically, takes $\Omega(n)$ time
 - Quantumly, takes $O(\sqrt{n})$ time

- Need quantum algorithmic primitives
 - I. Apply to a wide range of problems
 - 2. Easy to understand and analyze (without knowing quantum mechanics)
 - Ex: Searching unordered list of n items
 - Classically, takes $\Omega(n)$ time
 - Quantumly, takes $O(\sqrt{n})$ time
- New primitive: *st*-connectivity

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - 2. Easy to understand (without knowing quantum mechanics)
- C. Applications and performance of algorithm

st-connectivity

st-connectivity: is there a path from s to t?

st-connectivity

st-connectivity: is there a path from s to t?

Black Box Model

Figure of Merit

- Query Complexity
 - Number of uses (queries) of the black box
 - All other operations are free
- Under mild assumption, for our algorithm,
 quantum query complexity ≅ quantum time complexity

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - 2. Easy to understand (without knowing quantum mechanics)
- C. Applications and performance of algorithm

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - Evaluating Boolean formulas reduces to st-connectivity
 - 2. Easy to understand (without knowing quantum mechanics)
- C. Applications and performance of algorithm

Boolean Formula Applications

- Logic
- Designing electrical circuits
- Game theory (deciding who will win a game)
- Combinatorics and graph problems
- Linear programming
- Testing potential solution to an NP-complete problem

s and t are connected if all subgraphs are connected

AND: outputs 1 if all input subformulas have value 1

Outline:

- A. Introduction to Quantum Algorithms and st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - Evaluating Boolean formulas reduces to st-connectivity
 - 2. Easy to understand (without knowing quantum mechanics)

Valid flow:

- 1 unit in at s
- 1 unit out at t
- At all other nodes, zero net flow

Flow energy:

$$\sum_{edges} (flow on edge)^2$$

Flow energy:

$$\sum_{edges} (flow on edge)^2$$

Effective Resistance: $R_{s,t}(G)$ Smallest energy of any valid flow from sto t on G.

Flow energy:

$$\sum_{\text{edges}} (flow \ on \ edge)^2$$

Effective Resistance: $R_{s,t}(G)$

Smallest energy of any valid flow from s to t on G.

Properties of $R_{s,t}(G)$

- Small if many short paths from s to t
- Large if few long paths from s to t
- Infinite if s and t not connected

1 unit resistors

Effective Capacitance

Graph G':

Effective Capacitance

Valid potential energy:

- 1 at s
- 0 at t
- Potential energy difference is 0 across edge

Effective Capacitance

Valid potential energy:

- 1 at s
- 0 at t
- Potential energy difference is 0 across edge

Cut energy:

$$\sum_{edges} (Potential Energy Difference)^2$$

Effective Capacitance: $C_{s,t}(G')$ Smallest cut energy of any valid potential energy between s to t on G'. Graph G':

Cut energy:

 $\sum_{edges} (Potential Energy Difference)^2$

Effective Capacitance: $C_{s,t}(G')$ Smallest cut energy of any valid potential energy between s to t on G'.

Properties of $C_{s,t}(G')$

- Small if many small cuts
- Large if one large cuts
- Infinite if s and t connected

Algorithm Performance:

st-connectivity algorithm complexity =

$$O\left(\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}\right)$$

† with (s, t) added also planar

Algorithm Performance:

st-connectivity algorithm complexity =

$$O\left(\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}\right)$$

[Belovs, Reichard, '12]

[JJKP, in progress]

 $[\]dagger$ with (s, t) added also planar

What is quantum complexity of deciding $AND(x_1, x_2, ..., x_N)$, promised

- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.

What is quantum complexity of deciding $AND(x_1, x_2, ..., x_N)$, promised

- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.

- s and t are connected, or
- At least \sqrt{N} edges are missing

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}$$

$$\max_{G \in \mathcal{H}: connected} R_{s,t}(G) = N$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}$$

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G')}$$

$$\max_{G' \in \mathcal{H}: not \ connected} C_{s,t}(G') = \sqrt{N} \times \left(\frac{1}{\sqrt{N}}\right)^2 = \frac{1}{\sqrt{N}}$$

What is quantum complexity of deciding if

- s and t are connected, or
- At least \sqrt{N} edges are missing

Quantum complexity is $O(N^{1/4})$

What is quantum complexity of deciding if

- s and t are connected, or
- At least \sqrt{N} edges are missing

Quantum complexity is $O(N^{1/4})$

Randomized classical complexity is $\Omega(N^{1/2})$

Algorithm Performance

Algorithm Performance:

st-connectivity algorithm complexity =

$$O\left(\min_{w}\sqrt{\max_{G\in\mathcal{H}:connected}R_{s,t}(G,w)}\sqrt{\max_{G'\in\mathcal{H}:not\;connected}C_{s,t}(G',w)}\right)$$

Performance

- Vs. previous quantum st —connectivity algorithm
 - Find a family of graphs with N edges where our analysis uses O(1) queries, previous analysis uses $O(N^{1/4})$ queries. [JK]
 - Series-parallel graphs, our analysis uses $O(N^{1/2})$ queries, previous analysis uses O(N) queries. [JK]
- Vs. previous quantum Boolean formula algorithm
 - Match celebrated result that $O(\sqrt{N})$ queries required for total read-once Boolean formulas, but proof is simple!
 - Extend super-polynomial quantum to classical speed-up for families of NAND-trees [ZKH'12, K'13]

Related Algorithms

- Algorithms to estimate capacitance and effective resistance
 [JJKP]
- Algorithm to decide if graph with n vertices is completely connected, using

$$O(\sqrt{Dmn})$$

queries, where promised if connected, has diameter D, or if not connected, largest connected component has M vertices. [JJKP]

Open Questions and Current Directions

- When is our algorithm optimal for Boolean formulas? (Especially partial/read-many formulas)
- Are there other problems that reduce to st-connectivity? (Perhaps all?)
- What is the classical time/query complexity of st-connectivity in the black box model? Under the promise of small capacitance/resistance?
- Does our reduction from formulas to connectivity give good classical algorithms too?
- How to choose weights?

Other interests

- Statistical inference and machine learning applied to quantum characterization problems
- Quantum complexity theory, especially quantum versions of NP