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* Need quantum algorithmic primitives
|. Apply to a wide range of problems
2. Easy to understand and analyze (without knowing
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— Ex: Searching unordered list of n items
— Classically, takes 1(n) time
— Quantumly, takes 0(1/n) time

* New primitive: st-connectivity
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st — connectivity: ./ [

is there a path from s to t?




Black Box Model
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Let H be the set of graphs G that the
black box might contain.



Figure of Merit

* Query Complexity
—  Number of uses (queries) of the black box
—  All other operations are free

* Under mild assumption, for our algorithm,
quantum query complexity = quantum time complexity
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Boolean Formulas
@AND: outputs 1 if all inputs are 1 f(x)

@ OR:outputs 1 if any input is 1 w
Value 0 or 1
(V)
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Boolean Formulas

Read-once: x;’s not fan out

Read-many: x; have fan out w




Boolean Formula Applications

* Logic

* Designing electrical circuits

e Game theory (deciding who will win a game)

e Combinatorics and graph problems

* Linear programming

* Testing potential solution to an NP-complete problem




Application to Boolean Formulas

@AND: outputs 1 if all input

subformulas have value 1
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Application to Boolean Formulas

@AND:outputs 1 if all input @ OR: outputs 1 if any input
subformulas have value 1 subformulas have value 1
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Application to Boolean Formulas
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Application to Boolean Formulas

* If we put edges where
x; =1,sand t are
connected iff f(x) = 1!
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Outline:

A. Introduction to Quantum Algorithms and st-connectivity
B. st-connectivity makes a good algorithmic primitive
|. Applies to a wide range of problems
e Evaluating Boolean formulas reduces to st-connectivity
2. Easy to understand (without knowing quantum mechanics)
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Effective Resistance
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Effective Resistance

Flow energy:
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Effective Resistance
1 unit of flow
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Flow energy:
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* Large if few long paths from s to ¢t

* Infinite if s and t not connected
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Graph G":
Valid potential energy:
e lats
e QOatt

* Potential energy difference
is 0 across edge




Effective Capacitance

Graph G":

Cut energy:

z (Potential Energy Dif ference)?
edges

Effective Capacitance: C5¢(G")
Smallest cut energy of any valid potential
energy between s to t on G'.




Effective Capacitance

Graph G":

Cut energy:

z (Potential Energy Dif ference)?
edges

Effective Capacitance: C5¢(G")
Smallest cut energy of any valid potential
energy between s to t on G'.

Properties of Cs.(G")

e Small if many small cuts
e Large if one large cuts 0
* Infinite if s and t connected




Effective Capacitance

1 unit
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Algorithm Performance:

st-connectivity algorithm complexity =

0 max R (G max C..(C
GEH :connected S’t( ) G'eH not connected S’t( )

[Belovs, Reichard,’12] [JJKP in progress]

T with (s, t) added also planar
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What is quantum complexity of deciding
AND (x4, x5, ..., Xy ), promised

e Allx; =1,0r

At least VN input variables are 0.

What is quantum complexity of deciding if
e s andt are connected, or

e Atleast VN edges are missing

=
|
*—--0-—-0-——-0-—-9

o~




Example

What is quantum complexity of deciding if
e s and t are connected, or

* Atleast VN edges are missing
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Example
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* Atleast VN edges are missing
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What is quantum complexity of deciding if
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* Atleast VN edges are missing
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Example
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What is quantum complexity of deciding if
e s and t are connected, or

* Atleast VN edges are missing

max R.:(G max C.+(G'
\/Geﬂ:connected S’t( ) \/G’E}[:notconnected S’t( )
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Example

What is quantum complexity of deciding if
* s andt are connected, or

* Atleast VN edges are missing

\/ max R, +(G) J max Rg ¢/(G")
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Example

What is quantum complexity of deciding if
* s andt are connected, or

* Atleast VN edges are missing

\/ max R, +(G) J max Rg ¢/(G")

GEH:connected GEH :not connected

| |

N 1/VN

Quantum complexity is O(N*/*)

Randomized classical complexity is Q(N'/2)
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Algorithm Performance:

st-connectivity algorithm complexity =

w GEH:connected G'eH mot connected

0<min\[ max Rs,t(G,W)\/ max CSJt(G',W)>

[JJKP in progress]



Performance

* Vs. previous quantum st —connectivity algorithm
— Find a family of graphs with N edges where our analysis uses

0(1) queries, previous analysis uses O(N'/*) queries. [JK]
— Series-parallel graphs, our analysis uses O(N'/2) queries,
previous analysis uses O (NN) queries. [JK]

* Vs. previous quantum Boolean formula algorithm
— Match celebrated result that O(W) queries required for

total read-once Boolean formulas, but proof is simple!
— Extend super-polynomial quantum to classical speed-up for

families of NAND-trees [ZKH’ 12, K’13]




Related Algorithms

* Algorithms to estimate capacitance and effective resistance

[JKP]

* Algorithm to decide if graph with n vertices is completely
connected, using

0(v'Dmn)

queries, where promised if connected, has diameter D, or if not
connected, largest connected component has M vertices. [JJKP]




Open Questions and Current Directions

* When is our algorithm optimal for Boolean formulas? (Especially
partial/read-many formulas)

* Are there other problems that reduce to st-connectivity? (Perhaps
all?)

* What is the classical time/query complexity of st-connectivity in the
black box model? Under the promise of small capacitance/resistance!?

* Does our reduction from formulas to connectivity give good classical
algorithms too!?

* How to choose weights?




Other interests

 Statistical inference and machine learning applied to quantum
characterization problems
* Quantum complexity theory, especially quantum versions of NP
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