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Black Box Model

𝐺𝐺𝑖𝑖 𝑒𝑒𝑖𝑖

Edge 
label

• 𝑒𝑒𝑖𝑖 = 1 if 𝑖𝑖𝑡𝑡𝑡 edge is 
there

• 𝑒𝑒𝑖𝑖 = 0 if edge is not 
there
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𝑡𝑡Let ℋ be the set of graphs 𝐺𝐺 that the 
black box might contain.



Figure of Merit

• Query Complexity
– Number of uses (queries) of the black box
– All other operations are free

• Under mild assumption, for our algorithm, 
quantum query complexity ≅ quantum time complexity 
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Boolean Formula Applications

• Logic
• Designing electrical circuits
• Game theory (deciding who will win a game)
• Combinatorics and graph problems
• Linear programming
• Testing potential solution to an NP-complete problem
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Outline:
A. Introduction to Quantum Algorithms and st-connectivity
B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems
• Evaluating Boolean formulas reduces to st-connectivity

2. Easy to understand (without knowing quantum mechanics)



Effective Resistance

𝑠𝑠

𝑡𝑡

Graph 𝐺𝐺:



Effective Resistance

𝑠𝑠

𝑡𝑡

1 unit of flow

1 unit of flow



Effective Resistance

𝑠𝑠

𝑡𝑡

1 unit of flow

1 unit of flow

Valid flow:
• 1 unit in at 𝑠𝑠
• 1 unit out at 𝑡𝑡
• At all other nodes, zero net 

flow

1 unit 
of flow

1 unit 
of flow

𝑓𝑓 unit of 
flow 1 − 𝑓𝑓

unit of 
flow

0 unit 
of flow



Effective Resistance

𝑠𝑠

𝑡𝑡

1 unit of flow

1 unit of flow

Flow energy:

�
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 2

1 unit 
of flow

1 unit 
of flow

0 unit 
of flow

𝑓𝑓 unit of 
flow 1 − 𝑓𝑓

unit of 
flow



Effective Resistance

𝑠𝑠

𝑡𝑡

1 unit of flow

1 unit of flow

1 unit 
of flow

1 unit 
of flow

Flow energy:

�
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 2

Effective Resistance: 𝑅𝑅𝑠𝑠 ,𝑡𝑡(𝐺𝐺)
Smallest energy of any valid flow from 𝑠𝑠
to 𝑡𝑡 on 𝐺𝐺.

0 unit 
of flow

𝑓𝑓 unit of 
flow 1 − 𝑓𝑓

unit of 
flow



Effective Resistance

𝑠𝑠

𝑡𝑡

1 unit of flow

1 unit of flow

1 unit 
of flow

1 unit 
of flow

Flow energy:

�
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 2

Effective Resistance: 𝑅𝑅𝑠𝑠 ,𝑡𝑡(𝐺𝐺)
Smallest energy of any valid flow from 𝑠𝑠
to 𝑡𝑡 on 𝐺𝐺.

Properties of 𝑅𝑅𝑠𝑠,𝑡𝑡(𝐺𝐺)
• Small if many short paths from 𝑠𝑠 to 𝑡𝑡
• Large if few long paths from 𝑠𝑠 to 𝑡𝑡
• Infinite if 𝑠𝑠 and 𝑡𝑡 not connected
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𝑠𝑠

𝑡𝑡

𝑠𝑠

𝑡𝑡

1 unit 
resistors

𝑅𝑅𝑠𝑠 ,𝑡𝑡(𝐺𝐺) unit 
resistor
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Effective Capacitance
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𝑠𝑠

𝑁𝑁

𝑡𝑡

What is quantum complexity of deciding if 
• 𝑠𝑠 and 𝑡𝑡 are connected, or 
• At least 𝑁𝑁 edges are missing
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𝑠𝑠

𝑁𝑁

𝑡𝑡

What is quantum complexity of deciding if 
• 𝑠𝑠 and 𝑡𝑡 are connected, or 
• At least 𝑁𝑁 edges are missing
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Example 
What is quantum complexity of deciding if 
• 𝑠𝑠 and 𝑡𝑡 are connected, or 
• At least 𝑁𝑁 edges are missing

Quantum complexity is 𝑂𝑂 𝑁𝑁1/4

1/ 𝑁𝑁𝑁𝑁

max
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𝑅𝑅𝑠𝑠′,𝑡𝑡′(𝐺𝐺′)
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Example 
What is quantum complexity of deciding if 
• 𝑠𝑠 and 𝑡𝑡 are connected, or 
• At least 𝑁𝑁 edges are missing

Quantum complexity is 𝑂𝑂 𝑁𝑁1/4

1/ 𝑁𝑁𝑁𝑁

Randomized classical complexity is Ω 𝑁𝑁1/2

max
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𝑅𝑅𝑠𝑠 ,𝑡𝑡(𝐺𝐺) max
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𝑅𝑅𝑠𝑠′,𝑡𝑡′(𝐺𝐺′)

𝑠𝑠

𝑡𝑡



Algorithm Performance

𝑠𝑠

𝑡𝑡

1/𝑤𝑤1

𝑤𝑤2

𝑤𝑤3
𝑤𝑤4 𝑤𝑤5

𝑤𝑤6

𝑤𝑤7

𝑠𝑠

𝑡𝑡

𝑤𝑤1
1/𝑤𝑤2

1/𝑤𝑤3

1/𝑤𝑤4

1/𝑤𝑤5

1/𝑤𝑤6

1/𝑤𝑤7



Algorithm Performance:

st-connectivity algorithm complexity = 

𝑂𝑂 min
𝑤𝑤

max
𝐺𝐺∈ℋ:𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑅𝑅𝑠𝑠,𝑡𝑡 𝐺𝐺,𝑤𝑤 max
𝐺𝐺′∈ℋ:𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝑠𝑠,𝑡𝑡 𝐺𝐺′,𝑤𝑤

[JJKP, in progress]



Performance
• Vs. previous quantum 𝑠𝑠𝑠𝑠 −connectivity algorithm

‒ Find a family of graphs with 𝑁𝑁 edges where our analysis uses 
𝑂𝑂 1 queries, previous analysis uses 𝑂𝑂 𝑁𝑁1/4 queries. [JK]

‒ Series-parallel graphs, our analysis uses 𝑂𝑂 𝑁𝑁1/2 queries, 
previous analysis uses 𝑂𝑂 𝑁𝑁 queries. [JK]

• Vs. previous quantum Boolean formula algorithm
– Match celebrated result that 𝑂𝑂 𝑁𝑁 queries required for 

total read-once Boolean formulas, but proof is simple!
– Extend super-polynomial quantum to classical speed-up for 

families of NAND-trees [ZKH’12, K’13]



Related Algorithms
• Algorithms to estimate capacitance and effective resistance 

[JJKP]

• Algorithm to decide if graph with 𝑛𝑛 vertices is completely 
connected, using

𝑂𝑂 𝐷𝐷𝐷𝐷𝐷𝐷
queries, where promised if connected, has diameter 𝐷𝐷, or if not 
connected,  largest connected component has 𝑀𝑀 vertices. [JJKP]



Open Questions and Current Directions

• When is our algorithm optimal for Boolean formulas? (Especially 
partial/read-many formulas)

• Are there other problems that reduce to st-connectivity? (Perhaps 
all?)

• What is the classical time/query complexity of st-connectivity in the 
black box model? Under the promise of small capacitance/resistance?

• Does our reduction from formulas to connectivity give good classical 
algorithms too?

• How to choose weights?



Other interests

• Statistical inference and machine learning applied to quantum 
characterization problems

• Quantum complexity theory, especially quantum versions of NP
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