Path Detection: A Quantum Computing Primitive

Shelby Kimmel

University of Maryland

LFQIS 06/19/2017

Things Quantum Computers are Good at:

- Factoring
 - Exponential speed-up over known classical algorithms
 - Can be used to break most commonly used public key crypto systems
- Simulating chemistry
 - Exponential speed-up over known classical algorithms
 - Useful for drug development, better carbon sequestration

• Need quantum algorithmic primitives

- Need quantum algorithmic primitives
 - I. Apply to a wide range of problems
 - 2. Easy to understand and analyze (without knowing quantum mechanics)

- Need quantum algorithmic primitives
 - I. Apply to a wide range of problems
 - 2. Easy to understand and analyze (without knowing quantum mechanics)
 - Ex: Searching unordered list of n items
 - Classically, takes O(n) time
 - Quantumly, takes $O(\sqrt{n})$ time

- Need quantum algorithmic primitives
 - I. Apply to a wide range of problems
 - 2. Easy to understand and analyze (without knowing quantum mechanics)
 - Ex: Searching unordered list of n items
 - Classically, takes O(n) time
 - Quantumly, takes $O(\sqrt{n})$ time
- New primitive: *st*-connectivity

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - 2. Easy to understand (without knowing quantum mechanics)

st-connectivity

st - connectivity:
is there a path from s to t?

st-connectivity

st - connectivity:
is there a path from s to t?

Black Box Model

Let \mathcal{H} be the set of graphs G that the black box might contain.

Figure of Merit

- Query Complexity
 - Number of uses (queries) of the black box
 - All other operations are free
 - Always a lower bound on time complexity (situation when other operations are not free)
 - Often (but not always) a good proxy for time complexity
- Under mild assumption, for our algorithm,
 quantum query complexity ≅ quantum time complexity
- In query model it is easier to prove
 - Quantum-to-classical speed-ups
 - Optimality

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - 2. Easy to understand (without knowing quantum mechanics)

Outline:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - Evaluating Boolean formulas reduces to st-connectivity
 - 2. Easy to understand (without knowing quantum mechanics)

Boolean Formulas f(x)AND: outputs 1 if all inputs are 1 OR: outputs 1 if any input is 1 Value 0 or 1 $|\chi_i|$ χ_4 χ_3 χ_1 χ_2 χ_{ς}

Boolean Formulas

Boolean Formulas

Boolean Formulas

Boolean Formula Applications

- Logic
- Designing electrical circuits
- Game theory (deciding who will win a game)
- Combinatorics and graph problems
- Linear programming
- Testing potential solution to an NP-complete problem

AND: outputs 1 if all input subformulas have value 1

S

t

s and t are connected if all subgraphs are connected

AND: outputs 1 if all input subformulas have value 1

S

t

s and t are connected if all subgraphs are connected

OR: outputs 1 if any input subformulas have value 1 s and t are connected if any subgraph is t connected

Outline:

- A. Introduction to Quantum Algorithms and st-connectivity
- B. st-connectivity makes a good algorithmic primitive
 - I. Applies to a wide range of problems
 - Evaluating Boolean formulas reduces to st-connectivity
 - 2. Easy to understand (without knowing quantum mechanics)

Not Planar

Planar Graph including (s, t) Edge

Can add an edge from s to t and graph is still planar

Planar Graph including (s, t) Edge

Can add an edge from s to t and graph is still planar

Graph created during reduction from Boolean formula problem has this property by construction.

Effective Resistance

Effective Resistance

Effective Resistance

Valid flow:

- 1 unit in at s
- 1 unit out at t
- At all other nodes, zero net flow

Algorithm Performance:

Planar graph[†] st-connectivity algorithm complexity =

 $O\left(\sqrt{\max_{G\in\mathcal{H}:connected}} R_{s,t}(G) \sqrt{\max_{G\in\mathcal{H}:not\ connected}} R_{s',t'}(G')}\right)$

[†] with (s, t) added also planar

• If an edge is not present in G, it is present in G'

- If there is an st-path, there is no s't'-path.
- If there is an s't'-path, there is no st-path.

Algorithm Performance:

Planar graph[†] st-connectivity algorithm complexity =

 $O\left(\sqrt{\max_{G\in\mathcal{H}:connected}} R_{s,t}(G) \sqrt{\max_{G\in\mathcal{H}:not\ connected}} R_{s',t'}(G')}\right)$

[†] with (s, t) added also planar

What is quantum complexity of deciding $AND(x_1, x_2, ..., x_N)$, promised

- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.

What is quantum complexity of deciding $AND(x_1, x_2, ..., x_N)$, promised

- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.

What is quantum complexity of deciding if

- s and t are connected, or
- At least \sqrt{N} edges are missing

What is quantum complexity of deciding if

- *s* and *t* are connected, or
- At least \sqrt{N} edges are missing

 $\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G \in \mathcal{H}: not \ connected} R_{s',t'}(G')}$

What is quantum complexity of deciding if

- *s* and *t* are connected, or
- At least \sqrt{N} edges are missing

 $\sqrt{\max_{G \in \mathcal{H}: connected} R_{s,t}(G)} \sqrt{\max_{G \in \mathcal{H}: not \ connected} R_{s',t'}(G')}$

What is quantum complexity of deciding if

- *s* and *t* are connected, or
- At least \sqrt{N} edges are missing

$$\max_{G \in \mathcal{H}: connected} R_{s,t}(G) \sqrt{\max_{G \in \mathcal{H}: not \ connected} R_{s',t'}(G')}$$

$$\max_{G \in \mathcal{H}: not \ connected} R_{s,t}(G') = 1/\sqrt{N}$$

What is quantum complexity of deciding if

- *s* and *t* are connected, or
- At least \sqrt{N} edges are missing

Quantum complexity is $O(N^{1/4})$

What is quantum complexity of deciding if

- *s* and *t* are connected, or
- At least \sqrt{N} edges are missing

Quantum complexity is $O(N^{1/4})$

Randomized classical complexity is $\Omega(N^{1/2})$

Algorithm Performance:

Planar graph[†] st-connectivity algorithm complexity =

$$O\left(\sqrt{\max_{G\in\mathcal{H}:connected}R_{s,t}(G,w)}\sqrt{\max_{G\in\mathcal{H}:not\ connected}R_{s',t'}(G',w)}\right)$$

- Improvement over previous quantum *st* –connectivity algorithm
 - Find a family of graphs with N edges such that our algorithm uses O(1) queries, previous best algorithm uses $O(N^{1/4})$ queries

Improvement over previous quantum st —connectivity algorithm

- Find a family of graphs with N edges such that our algorithm uses O(1) queries, previous best algorithm uses $O(N^{1/4})$ queries
- Balloon graph: our algorithm uses $O(N^{1/2})$ queries, previous best algorithm uses O(N) queries

Improvement over previous quantum st —connectivity algorithm

- Find a family of graphs with N edges such that our algorithm uses O(1) queries, previous best algorithm uses $O(N^{1/4})$ queries
- Balloon graph: our algorithm uses $O(N^{1/2})$ queries, previous best algorithm uses O(N) queries

- Series-parallel graphs, our algorithm uses $O(N^{1/2})$ queries, previous best algorithm uses O(N) queries

- Comparison to previous Boolean formula algorithm
 - Match celebrated result that $O(\sqrt{N})$ queries required for total read-once Boolean formulas, but proof is simple!
 - Extend super-polynomial quantum to classical speed-up for families of NAND-trees [ZKH'12, K'13]

Non-planar st-connectivity algorithm complexity =

Update

Update

Open Questions

- When is our algorithm optimal for Boolean formulas? (Especially partial/read-many formulas)
- Are there other problems that reduce to st-connectivity?
- What is the classical time/query complexity of st-connectivity in the black box model?
- Does our reduction from formulas to connectivity give good classical algorithms too?
- Can we use this graph dual idea to improve other quantum algorithms?

arXiv: 1704.00765, with Stacey Jeffery

Other interests

- Statistical inference and machine learning applied to quantum characterization problems
- Quantum complexity theory, especially quantum versions of NP

Boolean Formulas f(x)AND: outputs 1 if all inputs are 1 OR: outputs 1 if any input is 1 Value 0 or 1 $|\chi_i|$ χ_4 χ_3 χ_1 χ_2 χ_{ς}

Boolean Formulas f(x)AND: outputs 1 if all inputs are 1 OR: outputs 1 if any input is 1 Value 0 or 1 $|\chi_i|$ χ_2 χ_3 χ_4 χ_{ς}

Boolean Formulas f(x)AND: outputs 1 if all inputs are 1 OR: outputs 1 if any input is 1 Value 0 or 1 $|\chi_1|$ χ_2 χ_{5}

Boolean Formulas f(x) = 1AND: outputs 1 if all inputs are 1 OR: outputs 1 if any input is 1 Value 0 or 1 $|\chi_1|$ χ_2 χ_{5}