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Importance of Computation 

• Across disciplines –  
– BIG DATA.  
– MACHINE LEARNING.  
– COMPLEX NETWORKS. 

More 
Data 

Longer computing 
times/ 

larger computers  



Quantum Computers Can Help! 

Data Analysis 

Search 
(Polynomial Time 

Improvement) 
[Grover ‘97] 

Streaming  
(Exponential Space 

Improvement) 
[Le Gall ‘09] 

Cryptography Simulation 



Quantum Computers Can Help! 

Design new quantum 
algorithms 

Practical Fundamental 



Result 

Knowledge of 
Q. Algorithm 

Structure 

Non-optimal 
algorithm 

Optimal 
algorithm 

Prove existence of  

Quantum Adversary  
Upper Bound: 



Larger Goals 
Knowledge of 
Q. Algorithm 

Structure 

? 



Outline 

• Oracle Model and Query Complexity 
• Quantum Adversary (Upper) Bound 
• Application 

– Prove existence of optimal algorithm using 
Quantum Adversary (Upper) Bound 

• Future Work: Adversary Bound and New 
Models of Computation 



Oracle Model 
 
Goal: Determine the value of 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) with inputs 
𝑥𝑥𝑖𝑖 = {0,1} for a known function f, given an oracle for 𝑥𝑥 
 

 

 

 

 
 

Care about 𝑄𝑄 𝑓𝑓 = “quantum query complexity” 
                               = # of quantum oracle uses (queries) 

Classical  
Oracle 

Quantum 
Oracle |𝑗𝑗⨁𝑥𝑥𝑖𝑖⟩ 

|𝑖𝑖⟩ |𝑖𝑖⟩ 
|𝑗𝑗⟩ 

𝑖𝑖 𝑥𝑥𝑖𝑖 



Example of Query Complexity 

0,0,⋯ , 0,0  
 

1,1,⋯ , 1,1  
 
50% 0, 50% 1 
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1 
 

𝑓𝑓 𝑥𝑥 

0 0 1 𝑥𝑥 0 0 
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Quantum Query Complexity 
# 

of
 Q

ue
rie

s 

Size of Problem 

Algorithms 

Quantum Adversary Bound 
[Ambainis ’00] 

Polynomial Method 
[Beals et al. ‘01] 



Quantum Query Complexity 
# 

of
 Q

ue
rie

s 

Algorithms 

Quantum Adversary Bound 
[Ambainis ’00] 

Polynomial Method 
[Beals et al. ‘01] 

Quantum Adversary 
(Upper) Bound [SK ‘12] 

Size of Problem 



Composed Functions 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛 

(Known) 

(Accessed via 
an oracle) 

? 



Composed Functions 
𝑓𝑓𝑘𝑘 ⇒ 𝑓𝑓 
composed 𝑘𝑘 
times 

⋯ ⋯ ⋯ 

𝑓𝑓 𝑓𝑓 𝑓𝑓 

? 

1 

𝑓𝑓 

𝑓𝑓 

𝑓𝑓 𝑓𝑓 ⋯ 

⋯
 
⋯ 

⋯
 

2 

𝑘𝑘 



Quantum Adversary Upper Bound 
[SK ’12] 

Let 𝑓𝑓 be a Boolean function. 
 
Create an algorithm for 𝑓𝑓𝑘𝑘, with 𝑇𝑇 queries, so learn 
𝑄𝑄 𝑓𝑓𝑘𝑘  is upper bounded by 𝑇𝑇. 
 
Then 𝑄𝑄(𝑓𝑓) is upper bounded by 𝑇𝑇1/𝑘𝑘. 
 
 
(Q 𝑓𝑓 = quantum query complexity of 𝑓𝑓) 



Let 𝑓𝑓 be a Boolean function. 
 
Create an algorithm for 𝑓𝑓𝑘𝑘, with 𝑇𝑇 queries, so learn 
𝑄𝑄 𝑓𝑓𝑘𝑘  is upper bounded by 𝑇𝑇. 
 
Then 𝑄𝑄(𝑓𝑓) is upper bounded by 𝑇𝑇1/𝑘𝑘. 

Surprising: 
• Does not give algorithm for 𝑓𝑓 

Algorithms 

Quantum Adversary Upper Bound 
[SK ’12] 



Let 𝑓𝑓 be a Boolean function. 
 
Create an algorithm for 𝑓𝑓𝑘𝑘, with 𝑇𝑇 queries, so learn 
𝑄𝑄 𝑓𝑓𝑘𝑘  is upper bounded by 𝑇𝑇. 
 
Then 𝑄𝑄(𝑓𝑓) is upper bounded by 𝑇𝑇1/𝑘𝑘. 

Surprising: 
• Does not give algorithm for 𝑓𝑓 
• This is a useful theorem!  

Algorithms 

Quantum Adversary Upper Bound 
[SK ’12] 



Quantum Adversary Upper Bound 

𝑓𝑓 

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑇𝑇) 

Expect 

𝑄𝑄 𝑓𝑓𝑘𝑘 = 𝑂𝑂(𝑇𝑇𝑘𝑘) 

Quantum 
Adversary 
Upper 
Bound 𝑓𝑓 

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑇𝑇) 



Example: 1-Fault NAND Tree 

NAND Tree  
 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥𝑛𝑛−1 𝑥𝑥𝑛𝑛 𝑥𝑥5 𝑥𝑥6 

? 

Input 1 Input 2 NAND 

0 0 1 

1 0 1 

0 1 1 

1 1 0 



Example: 1-Fault NAND Tree 

Fault Output 
0 

1 

1 

1 1 

0 0 0 

0 0 1 1 

0 0 0 0 1 1 1 1 1 0 1 0 0 

a 1 1 

1 

0 1 0 

Input to function, 
given via oracle 



Example: 1-Fault NAND Tree 

Fault Output 
0 

1 

1 

1 1 

0 0 0 

0 0 1 1 

0 0 0 0 1 1 1 1 1 0 1 0 0 

a 1 1 

1 

0 1 0 

Another view point: 1-Fault NAND Tree is a game tree 
where the players are promised that they will only 
have to make one critical decision in the game. 



Example: 1-Fault NAND Tree 

1-Fault NAND Tree 

Depth 𝑑𝑑 

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑑𝑑2) 

Depth 
𝑑𝑑 log𝑑𝑑 

[1−Fault NAND Tree]log 𝑑𝑑  

𝑄𝑄 𝑓𝑓log 𝑑𝑑 = 𝑂𝑂(𝑑𝑑3) 

[Zhan, Hassidim, SK `12] 

We found algorithm for k-fault 
tree using (2𝑘𝑘 × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2) queries 



Quantum Adversary Upper Bound 

1−Fault NAND Tree is a Boolean function 
 
Quantum query complexity of  
[1−Fault NAND Tree]log 𝑑𝑑 is 𝑂𝑂(𝑑𝑑3) 
 
Then the quantum query complexity of  
[1−Fault NAND Tree] is 
𝑂𝑂 𝑑𝑑3/ log 𝑑𝑑 = O 23log 𝑑𝑑/ log 𝑑𝑑 = 𝑂𝑂(1) 
 
• Classical query complexity is Ω(log𝑑𝑑) 
• Can show 𝑄𝑄([constant−Fault NAND Tree]=O(1)  

 



Proving the Quantum Adversary Upper 
Bound: Powerful Tools at work 
𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓) = 𝜃𝜃(𝑄𝑄(𝑓𝑓)) [Reichardt, ‘09, ’11] 
 
𝐴𝐴𝐴𝐴𝐴𝐴± = General Adversary Bound 
• Completely characterize query complexity. 
• Semi-definite program (size scales exponentially with 

the # of inputs) 
• Strong conditions on its behavior for composed 

functions. 
 
 



Proving the Quantum Adversary Upper 
Bound: Powerful Tools at work 
Lemma 2: 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓𝑘𝑘) ≥ 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓)𝑘𝑘  
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)] 

• Given a matrix that maximizes 
objective function of SDP of 
𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓), construct a matrix 
satisfying the SDP for 𝑓𝑓𝑘𝑘 

• When 𝑓𝑓 is partial, set entries 
corresponding to non-valid 
inputs to 0. Need to check 
that things go through 

𝑓𝑓 

𝑓𝑓 

𝑓𝑓 𝑓𝑓 ⋯ 



Long Story Short 
• Quantum adversary upper bound can prove 

the existence of optimal quantum algorithms 
for 
– 1-Fault NAND Tree 
– Other constant fault trees 

• I found explicit algorithms that match. 
 

• Can we take advantage of the structure of 
quantum algorithms to prove other results? 



My Goal: Apply 𝐴𝐴𝐴𝐴𝐴𝐴± to new models 

Quantum 
Oracle |𝑗𝑗⨁𝑥𝑥𝑖𝑖⟩ 

|𝑖𝑖⟩ |𝑖𝑖⟩ 
|𝑗𝑗⟩ 

Pros of Oracle Model 
• Have powerful tools to bound 𝑄𝑄(𝑓𝑓) 
 
Cons of Oracle Model 
• Assumes you can implement oracle perfectly 
• Black boxes usually not black 
• Only takes into account oracle uses, not time 

or space necessary to solve problem 
 



My Goal: Apply 𝐴𝐴𝐴𝐴𝐴𝐴± to new models 

What if oracle has error? 
• With probability 𝑝𝑝 does nothing. [Regev, Schiff ‘08] 

 
Conjecture: Require 𝑝𝑝 < 𝑄𝑄(𝑓𝑓)−1  

Quantum 
Oracle |𝑗𝑗⨁𝑥𝑥𝑖𝑖⟩ 

|𝑖𝑖⟩ |𝑖𝑖⟩ 
|𝑗𝑗⟩ 
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Quantum 
Oracle |𝑗𝑗⨁𝑥𝑥𝑖𝑖⟩ 

|𝑖𝑖⟩ |𝑖𝑖⟩ 
|𝑗𝑗⟩ 

Pros of Oracle Model 
• Have powerful tools to bound 𝑄𝑄(𝑓𝑓) 
 
Cons of Oracle Model 
• Assumes you can implement oracle perfectly 
• Black boxes usually not black 
• Only takes into account oracle uses, not time 

or space necessary to solve problem 
 



My Goal: Apply 𝐴𝐴𝐴𝐴𝐴𝐴± to new models 

𝟏𝟏 |𝑗𝑗 ⊕ 𝑥𝑥11⟩ 
|𝑖𝑖⟩ |𝑖𝑖⟩ 

|𝑗𝑗⟩ 

More realistic model: 
• Can use knowledge of 𝑥𝑥 to create multiple oracles 

with different types of information 
• Different operations take different times to 

implement 

𝑘𝑘 
|𝑗𝑗 ⊕ 𝑥𝑥1𝑘𝑘� 
|𝑖𝑖⟩ |𝑖𝑖⟩ 

|𝑗𝑗⟩ 

Cost 𝑐𝑐1 Cost 𝑐𝑐𝑘𝑘 

⋯ 



Long Story Short 
• Quantum adversary upper bound can prove 

the existence of optimal quantum algorithms 
for 
– 1-Fault NAND Tree 
– Other constant fault trees 

• I found explicit algorithms that match. 
 

• Can we take advantage of the structure of 
quantum algorithms to prove other results? 



Proving Quantum Adversary Upper 
Bound 

Lemma 1: 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓) = 𝜃𝜃(𝑄𝑄(𝑓𝑓)) [Reichardt, ‘09, ’11] 
 
Lemma 2: 𝐴𝐴𝐴𝐴𝐴𝐴± 𝑓𝑓𝑘𝑘 ≥ 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓)𝑘𝑘  
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)] 
Proof [SK ‘11]: 

𝑄𝑄 𝑓𝑓𝑘𝑘 = 𝑂𝑂 𝑇𝑇  
 

𝐴𝐴𝐴𝐴𝐴𝐴± 𝑓𝑓𝑘𝑘 = 𝑂𝑂(𝑇𝑇) 
 

𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓)𝑘𝑘 = 𝑂𝑂(𝑇𝑇) 
 

𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓) = 𝑂𝑂(𝑇𝑇1/𝑘𝑘) 



Matching Algorithm? 

• For all c-Fault NAND Trees, O(1) query 
algorithms must exist. 

• Can we find them? 





𝑓𝑓(𝑥𝑥) 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛 

{𝑣⃗𝑣10, 𝑣⃗𝑣11} 
{𝑣⃗𝑣20, 𝑣⃗𝑣21} 

{𝑣⃗𝑣𝑛𝑛0, 𝑣⃗𝑣𝑛𝑛𝑛} 

𝑡𝑡 

  𝑓𝑓 𝑥⃗𝑥𝑖𝑖 = 1 iff 
𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆{𝑣⃗𝑣1𝑖𝑖 , 𝑣⃗𝑣2𝑖𝑖 , … , 𝑣⃗𝑣𝑛𝑛𝑖𝑖} 

Method 1: Span Programs [Zhan, Hassidim, SK ’12, 
       SK, ‘13] 



Method 1: Span Programs [Zhan, Hassidim, SK ’12, 
       SK, ‘13] 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛 

{𝑣⃗𝑣10, 𝑣⃗𝑣11} 
{𝑣⃗𝑣20, 𝑣⃗𝑣21} 

{𝑣⃗𝑣𝑛𝑛0, 𝑣⃗𝑣𝑛𝑛𝑛} 

  𝑓𝑓 𝑥⃗𝑥𝑖𝑖 = 1 iff 
𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆{𝑣⃗𝑣1𝑖𝑖 , 𝑣⃗𝑣2𝑖𝑖 , … , 𝑣⃗𝑣𝑛𝑛𝑖𝑖} 

AND: 

𝑣⃗𝑣11 =
1
1

, 𝑣⃗𝑣21 =
0
1

, 𝑡𝑡 =
1
0

 

All other: 0
0  

𝑡𝑡 



Method 2: Haar Transform 

Fault 
Output 0 

1 

1 

1 1 

0 0 0 

0 0 1 1 

0 0 0 0 1 1 1 1 1 0 0 

a 1 

1 

1 

1 

0 1 1 0 



Method 2: Haar Transform 

• Start in superposition: 1
𝑛𝑛
∑ |𝑖𝑖⟩. 

• Apply Oracle. Phases= 
• Measure in Haar Basis (efficient, Hoyer ’97) 



Method 2: Haar Transform 

Fault 
Output 0 

1 

1 

1 1 

0 0 0 

0 0 1 1 

0 0 0 0 1 1 1 1 1 0 0 

a 1 

1 

1 

1 

0 1 1 0 



Extension: c-Fault Direct Tree 

Direct Tree  
 DIRECT 

DIRECT DIRECT 

DIRECT DIRECT DIRECT DIRECT 

DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT 

𝑥𝑥1 

? 

𝑥𝑥𝑛𝑛 

DIRECT → generalization of monotonic.  



Direct Functions 

• Examples: Majority, NOT-Majority 
• Generalization of monotonic  

𝑥⃗𝑥0 𝑥⃗𝑥1 

𝑓𝑓(𝑥⃗𝑥) 

0 

1 

Each step flip a new bit 

Fault inputs 



Open Questions: Unique Result? 

• Classically is it possible to prove the existence 
of an algorithm without creating it? 
– Probabilistic/Combinatorial algorithms can prove 

that queries exist that will give an optimal 
algorithm, but would need to do a brute-force 
search to find them [Grebinski and Kucherov, ‘97] 



Application: Period Finding 

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ⋯ 



Summary and Open Questions 
• Quantum adversary upper bound can prove 

the existence of quantum algorithms 
– 1-Fault NAND Tree 
– Other constant fault trees 

 
• Are there other problems where this 

technique will be useful? 
• Do the matching algorithms have other 

applications? 
• Other Adversary SDP applications? 



Types of Quantum Algorithms 

Structured 
Algorithms 

• Shor’s Algorithm 
• Hidden Subgroup 
• Phase Estimation 

Unstructured 
Algorithms 

• Grover’s Algorithm 
• Element 
Distinctness 

By understanding the structure underlying quantum 
algorithms, can we find and design new algorithms? 



Future Work 

• This result uses powerful tools and deep 
understanding of quantum algorithm 

• BUT – model of computation is limited 
• Use similar tools to understand new (and 

more realistic) models of quantum 
algorithms? 
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