
Structure in Quantum Algorithms:
Quantum Adversary (Upper) Bound

Shelby Kimmel
Center for Theoretical Physics,

Massachusetts Institute of Technology

Santa Fe Institute, Jan. 27, 2014

Importance of Computation

• Across disciplines –
– BIG DATA.
– MACHINE LEARNING.
– COMPLEX NETWORKS.

More
Data

Longer computing
times/

larger computers

Quantum Computers Can Help!

Data Analysis

Search
(Polynomial Time

Improvement)
[Grover ‘97]

Streaming
(Exponential Space

Improvement)
[Le Gall ‘09]

Cryptography Simulation

Quantum Computers Can Help!

Design new quantum
algorithms

Practical Fundamental

Result

Knowledge of
Q. Algorithm

Structure

Non-optimal
algorithm

Optimal
algorithm

Prove existence of

Quantum Adversary
Upper Bound:

Larger Goals
Knowledge of
Q. Algorithm

Structure

?

Outline

• Oracle Model and Query Complexity
• Quantum Adversary (Upper) Bound
• Application

– Prove existence of optimal algorithm using
Quantum Adversary (Upper) Bound

• Future Work: Adversary Bound and New
Models of Computation

Oracle Model

Goal: Determine the value of 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) with inputs
𝑥𝑥𝑖𝑖 = {0,1} for a known function f, given an oracle for 𝑥𝑥

Care about 𝑄𝑄 𝑓𝑓 = “quantum query complexity”
 = # of quantum oracle uses (queries)

Classical
Oracle

Quantum
Oracle |𝑗𝑗⨁𝑥𝑥𝑖𝑖⟩

|𝑖𝑖⟩ |𝑖𝑖⟩
|𝑗𝑗⟩

𝑖𝑖 𝑥𝑥𝑖𝑖

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓𝑓 𝑥𝑥

0 0 1 𝑥𝑥 0 0

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓𝑓 𝑥𝑥

0 0 1 𝑥𝑥 0 0

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓𝑓 𝑥𝑥

0 0 1 𝑥𝑥 0 0

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓𝑓 𝑥𝑥

0 0 1 𝑥𝑥 0 0

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓𝑓 𝑥𝑥

0 0 1 𝑥𝑥 0 0

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓𝑓 𝑥𝑥

0 0 1 𝑥𝑥 0 0

Quantum Query Complexity

of
 Q

ue
rie

s

Size of Problem

Algorithms

Quantum Adversary Bound
[Ambainis ’00]

Polynomial Method
[Beals et al. ‘01]

Quantum Query Complexity

of
 Q

ue
rie

s

Algorithms

Quantum Adversary Bound
[Ambainis ’00]

Polynomial Method
[Beals et al. ‘01]

Quantum Adversary
(Upper) Bound [SK ‘12]

Size of Problem

Composed Functions

𝑓𝑓(𝑥𝑥)

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

(Known)

(Accessed via
an oracle)

?

Composed Functions
𝑓𝑓𝑘𝑘 ⇒ 𝑓𝑓
composed 𝑘𝑘
times

⋯ ⋯ ⋯

𝑓𝑓 𝑓𝑓 𝑓𝑓

?

1

𝑓𝑓

𝑓𝑓

𝑓𝑓 𝑓𝑓 ⋯

⋯

⋯

⋯

2

𝑘𝑘

Quantum Adversary Upper Bound
[SK ’12]

Let 𝑓𝑓 be a Boolean function.

Create an algorithm for 𝑓𝑓𝑘𝑘, with 𝑇𝑇 queries, so learn
𝑄𝑄 𝑓𝑓𝑘𝑘 is upper bounded by 𝑇𝑇.

Then 𝑄𝑄(𝑓𝑓) is upper bounded by 𝑇𝑇1/𝑘𝑘.

(Q 𝑓𝑓 = quantum query complexity of 𝑓𝑓)

Let 𝑓𝑓 be a Boolean function.

Create an algorithm for 𝑓𝑓𝑘𝑘, with 𝑇𝑇 queries, so learn
𝑄𝑄 𝑓𝑓𝑘𝑘 is upper bounded by 𝑇𝑇.

Then 𝑄𝑄(𝑓𝑓) is upper bounded by 𝑇𝑇1/𝑘𝑘.

Surprising:
• Does not give algorithm for 𝑓𝑓

Algorithms

Quantum Adversary Upper Bound
[SK ’12]

Let 𝑓𝑓 be a Boolean function.

Create an algorithm for 𝑓𝑓𝑘𝑘, with 𝑇𝑇 queries, so learn
𝑄𝑄 𝑓𝑓𝑘𝑘 is upper bounded by 𝑇𝑇.

Then 𝑄𝑄(𝑓𝑓) is upper bounded by 𝑇𝑇1/𝑘𝑘.

Surprising:
• Does not give algorithm for 𝑓𝑓
• This is a useful theorem!

Algorithms

Quantum Adversary Upper Bound
[SK ’12]

Quantum Adversary Upper Bound

𝑓𝑓

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑇𝑇)

Expect

𝑄𝑄 𝑓𝑓𝑘𝑘 = 𝑂𝑂(𝑇𝑇𝑘𝑘)

Quantum
Adversary
Upper
Bound 𝑓𝑓

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑇𝑇)

Example: 1-Fault NAND Tree

NAND Tree

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥𝑛𝑛−1 𝑥𝑥𝑛𝑛 𝑥𝑥5 𝑥𝑥6

?

Input 1 Input 2 NAND

0 0 1

1 0 1

0 1 1

1 1 0

Example: 1-Fault NAND Tree

Fault Output
0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 1 0 0

a 1 1

1

0 1 0

Input to function,
given via oracle

Example: 1-Fault NAND Tree

Fault Output
0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 1 0 0

a 1 1

1

0 1 0

Another view point: 1-Fault NAND Tree is a game tree
where the players are promised that they will only
have to make one critical decision in the game.

Example: 1-Fault NAND Tree

1-Fault NAND Tree

Depth 𝑑𝑑

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑑𝑑2)

Depth
𝑑𝑑 log𝑑𝑑

[1−Fault NAND Tree]log 𝑑𝑑

𝑄𝑄 𝑓𝑓log 𝑑𝑑 = 𝑂𝑂(𝑑𝑑3)

[Zhan, Hassidim, SK `12]

We found algorithm for k-fault
tree using (2𝑘𝑘 × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2) queries

Quantum Adversary Upper Bound

1−Fault NAND Tree is a Boolean function

Quantum query complexity of
[1−Fault NAND Tree]log 𝑑𝑑 is 𝑂𝑂(𝑑𝑑3)

Then the quantum query complexity of
[1−Fault NAND Tree] is
𝑂𝑂 𝑑𝑑3/ log 𝑑𝑑 = O 23log 𝑑𝑑/ log 𝑑𝑑 = 𝑂𝑂(1)

• Classical query complexity is Ω(log𝑑𝑑)
• Can show 𝑄𝑄([constant−Fault NAND Tree]=O(1)

Proving the Quantum Adversary Upper
Bound: Powerful Tools at work
𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓) = 𝜃𝜃(𝑄𝑄(𝑓𝑓)) [Reichardt, ‘09, ’11]

𝐴𝐴𝐴𝐴𝐴𝐴± = General Adversary Bound
• Completely characterize query complexity.
• Semi-definite program (size scales exponentially with

the # of inputs)
• Strong conditions on its behavior for composed

functions.

Proving the Quantum Adversary Upper
Bound: Powerful Tools at work
Lemma 2: 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓𝑘𝑘) ≥ 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓)𝑘𝑘
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)]

• Given a matrix that maximizes
objective function of SDP of
𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓), construct a matrix
satisfying the SDP for 𝑓𝑓𝑘𝑘

• When 𝑓𝑓 is partial, set entries
corresponding to non-valid
inputs to 0. Need to check
that things go through

𝑓𝑓

𝑓𝑓

𝑓𝑓 𝑓𝑓 ⋯

Long Story Short
• Quantum adversary upper bound can prove

the existence of optimal quantum algorithms
for
– 1-Fault NAND Tree
– Other constant fault trees

• I found explicit algorithms that match.

• Can we take advantage of the structure of
quantum algorithms to prove other results?

My Goal: Apply 𝐴𝐴𝐴𝐴𝐴𝐴± to new models

Quantum
Oracle |𝑗𝑗⨁𝑥𝑥𝑖𝑖⟩

|𝑖𝑖⟩ |𝑖𝑖⟩
|𝑗𝑗⟩

Pros of Oracle Model
• Have powerful tools to bound 𝑄𝑄(𝑓𝑓)

Cons of Oracle Model
• Assumes you can implement oracle perfectly
• Black boxes usually not black
• Only takes into account oracle uses, not time

or space necessary to solve problem

My Goal: Apply 𝐴𝐴𝐴𝐴𝐴𝐴± to new models

What if oracle has error?
• With probability 𝑑𝑑 does nothing. [Regev, Schiff ‘08]

Conjecture: Require 𝑑𝑑 < 𝑄𝑄(𝑓𝑓)−1

Quantum
Oracle |𝑗𝑗⨁𝑥𝑥𝑖𝑖⟩

|𝑖𝑖⟩ |𝑖𝑖⟩
|𝑗𝑗⟩

My Goal: Apply 𝐴𝐴𝐴𝐴𝐴𝐴± to new models

Quantum
Oracle |𝑗𝑗⨁𝑥𝑥𝑖𝑖⟩

|𝑖𝑖⟩ |𝑖𝑖⟩
|𝑗𝑗⟩

Pros of Oracle Model
• Have powerful tools to bound 𝑄𝑄(𝑓𝑓)

Cons of Oracle Model
• Assumes you can implement oracle perfectly
• Black boxes usually not black
• Only takes into account oracle uses, not time

or space necessary to solve problem

My Goal: Apply 𝐴𝐴𝐴𝐴𝐴𝐴± to new models

𝟏𝟏 |𝑗𝑗 ⊕ 𝑥𝑥11⟩
|𝑖𝑖⟩ |𝑖𝑖⟩

|𝑗𝑗⟩

More realistic model:
• Can use knowledge of 𝑥𝑥 to create multiple oracles

with different types of information
• Different operations take different times to

implement

𝑘𝑘
|𝑗𝑗 ⊕ 𝑥𝑥1𝑘𝑘�
|𝑖𝑖⟩ |𝑖𝑖⟩

|𝑗𝑗⟩

Cost 𝑐𝑐1 Cost 𝑐𝑐𝑘𝑘

⋯

Long Story Short
• Quantum adversary upper bound can prove

the existence of optimal quantum algorithms
for
– 1-Fault NAND Tree
– Other constant fault trees

• I found explicit algorithms that match.

• Can we take advantage of the structure of
quantum algorithms to prove other results?

Proving Quantum Adversary Upper
Bound

Lemma 1: 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓) = 𝜃𝜃(𝑄𝑄(𝑓𝑓)) [Reichardt, ‘09, ’11]

Lemma 2: 𝐴𝐴𝐴𝐴𝐴𝐴± 𝑓𝑓𝑘𝑘 ≥ 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓)𝑘𝑘
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)]
Proof [SK ‘11]:

𝑄𝑄 𝑓𝑓𝑘𝑘 = 𝑂𝑂 𝑇𝑇

𝐴𝐴𝐴𝐴𝐴𝐴± 𝑓𝑓𝑘𝑘 = 𝑂𝑂(𝑇𝑇)

𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓)𝑘𝑘 = 𝑂𝑂(𝑇𝑇)

𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓) = 𝑂𝑂(𝑇𝑇1/𝑘𝑘)

Matching Algorithm?

• For all c-Fault NAND Trees, O(1) query
algorithms must exist.

• Can we find them?

𝑓𝑓(𝑥𝑥)

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

{�⃗�𝑣10, �⃗�𝑣11}
{�⃗�𝑣20, �⃗�𝑣21}

{�⃗�𝑣𝑛𝑛0, �⃗�𝑣𝑛𝑛1}

𝑑𝑑

 𝑓𝑓 �⃗�𝑥𝑖𝑖 = 1 iff
𝑑𝑑 ∈ 𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆{�⃗�𝑣1𝑖𝑖 , �⃗�𝑣2𝑖𝑖 , … , �⃗�𝑣𝑛𝑛𝑖𝑖}

Method 1: Span Programs [Zhan, Hassidim, SK ’12,
 SK, ‘13]

Method 1: Span Programs [Zhan, Hassidim, SK ’12,
 SK, ‘13]

𝑓𝑓(𝑥𝑥)

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

{�⃗�𝑣10, �⃗�𝑣11}
{�⃗�𝑣20, �⃗�𝑣21}

{�⃗�𝑣𝑛𝑛0, �⃗�𝑣𝑛𝑛1}

 𝑓𝑓 �⃗�𝑥𝑖𝑖 = 1 iff
𝑑𝑑 ∈ 𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆{�⃗�𝑣1𝑖𝑖 , �⃗�𝑣2𝑖𝑖 , … , �⃗�𝑣𝑛𝑛𝑖𝑖}

AND:

�⃗�𝑣11 =
1
1

, �⃗�𝑣21 =
0
1

, 𝑑𝑑 =
1
0

All other: 0
0

𝑑𝑑

Method 2: Haar Transform

Fault
Output 0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 0

a 1

1

1

1

0 1 1 0

Method 2: Haar Transform

• Start in superposition: 1
𝑛𝑛
∑ |𝑖𝑖⟩.

• Apply Oracle. Phases=
• Measure in Haar Basis (efficient, Hoyer ’97)

Method 2: Haar Transform

Fault
Output 0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 0

a 1

1

1

1

0 1 1 0

Extension: c-Fault Direct Tree

Direct Tree
 DIRECT

DIRECT DIRECT

DIRECT DIRECT DIRECT DIRECT

DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT

𝑥𝑥1

?

𝑥𝑥𝑛𝑛

DIRECT → generalization of monotonic.

Direct Functions

• Examples: Majority, NOT-Majority
• Generalization of monotonic

�⃗�𝑥0 �⃗�𝑥1

𝑓𝑓(�⃗�𝑥)

0

1

Each step flip a new bit

Fault inputs

Open Questions: Unique Result?

• Classically is it possible to prove the existence
of an algorithm without creating it?
– Probabilistic/Combinatorial algorithms can prove

that queries exist that will give an optimal
algorithm, but would need to do a brute-force
search to find them [Grebinski and Kucherov, ‘97]

Application: Period Finding

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ⋯

Summary and Open Questions
• Quantum adversary upper bound can prove

the existence of quantum algorithms
– 1-Fault NAND Tree
– Other constant fault trees

• Are there other problems where this

technique will be useful?
• Do the matching algorithms have other

applications?
• Other Adversary SDP applications?

Types of Quantum Algorithms

Structured
Algorithms

• Shor’s Algorithm
• Hidden Subgroup
• Phase Estimation

Unstructured
Algorithms

• Grover’s Algorithm
• Element
Distinctness

By understanding the structure underlying quantum
algorithms, can we find and design new algorithms?

Future Work

• This result uses powerful tools and deep
understanding of quantum algorithm

• BUT – model of computation is limited
• Use similar tools to understand new (and

more realistic) models of quantum
algorithms?

	Structure in Quantum Algorithms:�Quantum Adversary (Upper) Bound
	Importance of Computation
	Quantum Computers Can Help!
	Quantum Computers Can Help!
	Result
	Larger Goals
	Outline
	Oracle Model
	Example of Query Complexity
	Example of Query Complexity
	Example of Query Complexity
	Example of Query Complexity
	Example of Query Complexity
	Example of Query Complexity
	Quantum Query Complexity
	Quantum Query Complexity
	Composed Functions
	Composed Functions
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Quantum Adversary Upper Bound
	Example: 1-Fault NAND Tree
	Example: 1-Fault NAND Tree
	Example: 1-Fault NAND Tree
	Example: 1-Fault NAND Tree
	Quantum Adversary Upper Bound
	Proving the Quantum Adversary Upper Bound: Powerful Tools at work
	Proving the Quantum Adversary Upper Bound: Powerful Tools at work
	Long Story Short
	My Goal: Apply 𝐴𝐷𝑉 ± to new models
	My Goal: Apply 𝐴𝐷𝑉 ± to new models
	My Goal: Apply 𝐴𝐷𝑉 ± to new models
	My Goal: Apply 𝐴𝐷𝑉 ± to new models
	Long Story Short
	Proving Quantum Adversary Upper Bound
	Matching Algorithm?
	Slide Number 38
	Method 1: Span Programs [Zhan, Hassidim, SK ’12,�							SK, ‘13]
	Method 1: Span Programs [Zhan, Hassidim, SK ’12,�							SK, ‘13]
	Method 2: Haar Transform
	Method 2: Haar Transform
	Method 2: Haar Transform
	Extension: c-Fault Direct Tree
	Direct Functions
	Open Questions: Unique Result?
	Application: Period Finding
	Summary and Open Questions
	Types of Quantum Algorithms
	Future Work

