Structure in Quantum Algorithms: Quantum Adversary (Upper) Bound

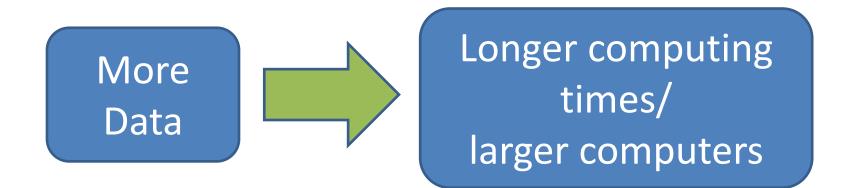
Shelby Kimmel

Center for Theoretical Physics, Massachusetts Institute of Technology

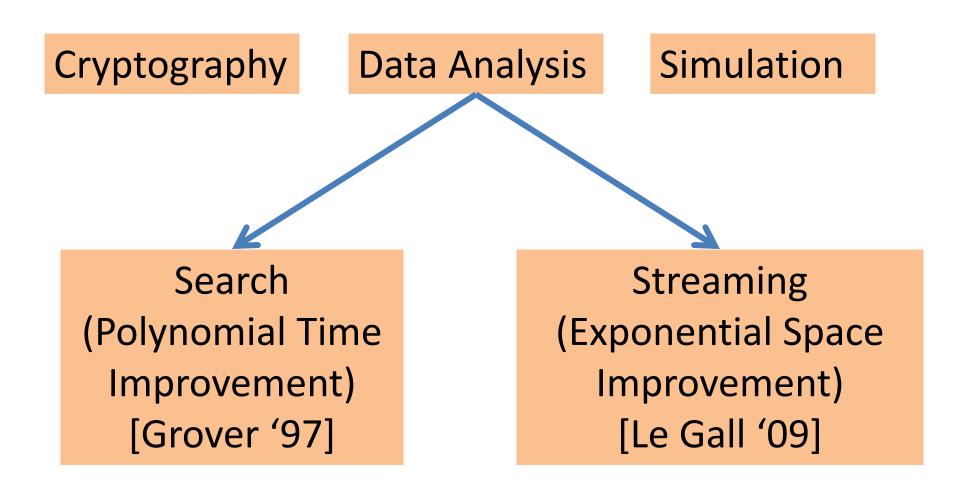
Santa Fe Institute, Jan. 27, 2014

Importance of Computation

- Across disciplines
 - BIG DATA.
 - MACHINE LEARNING.
 - COMPLEX NETWORKS.



Quantum Computers Can Help!

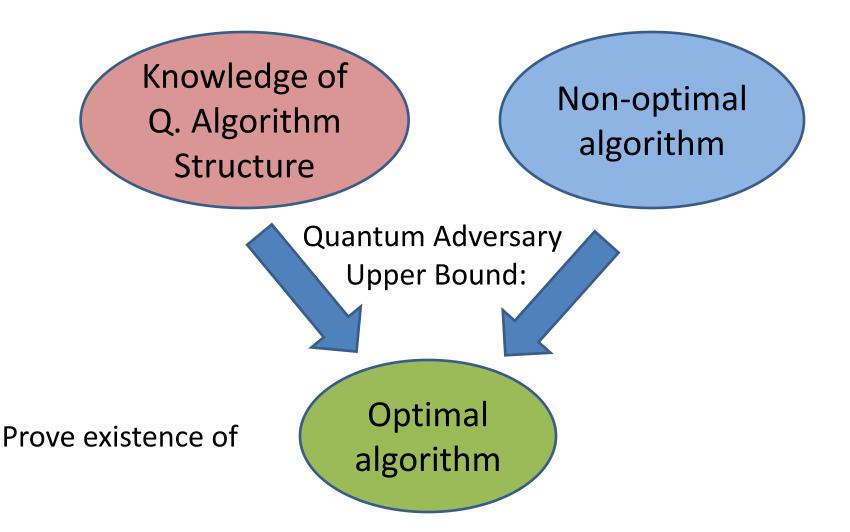


Quantum Computers Can Help!

Design new quantum algorithms

Practical

Fundamental



Larger Goals

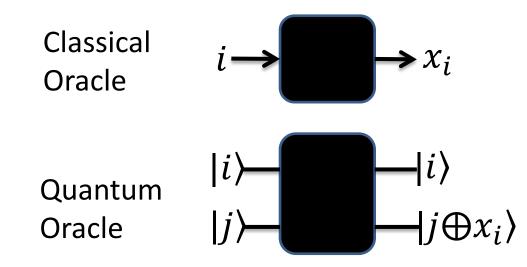
Knowledge of Q. Algorithm Structure

Outline

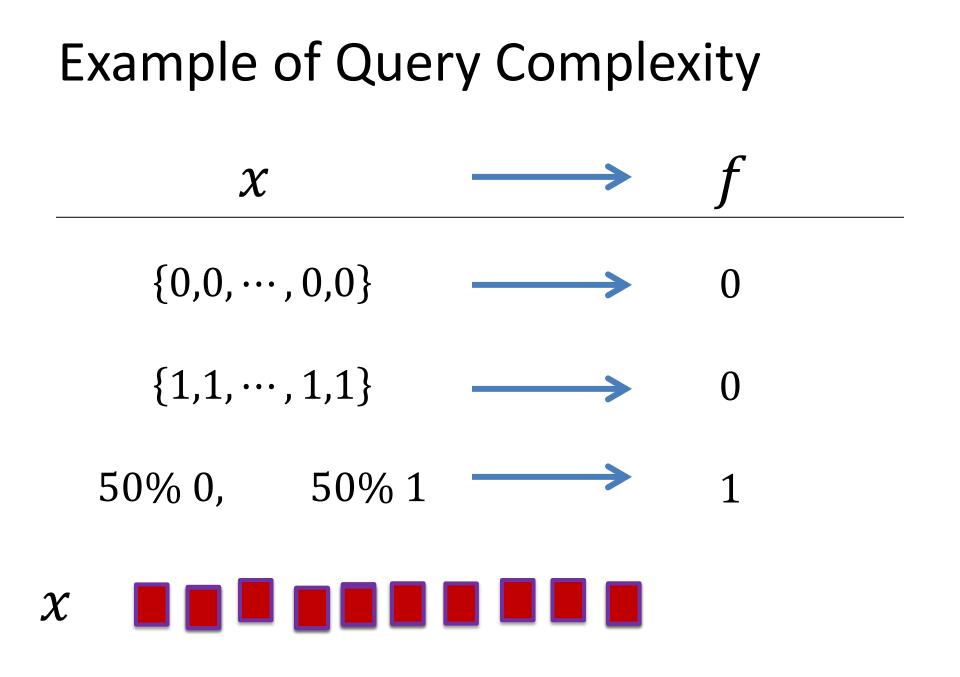
- Oracle Model and Query Complexity
- Quantum Adversary (Upper) Bound
- Application
 - Prove existence of optimal algorithm using Quantum Adversary (Upper) Bound
- Future Work: Adversary Bound and New Models of Computation

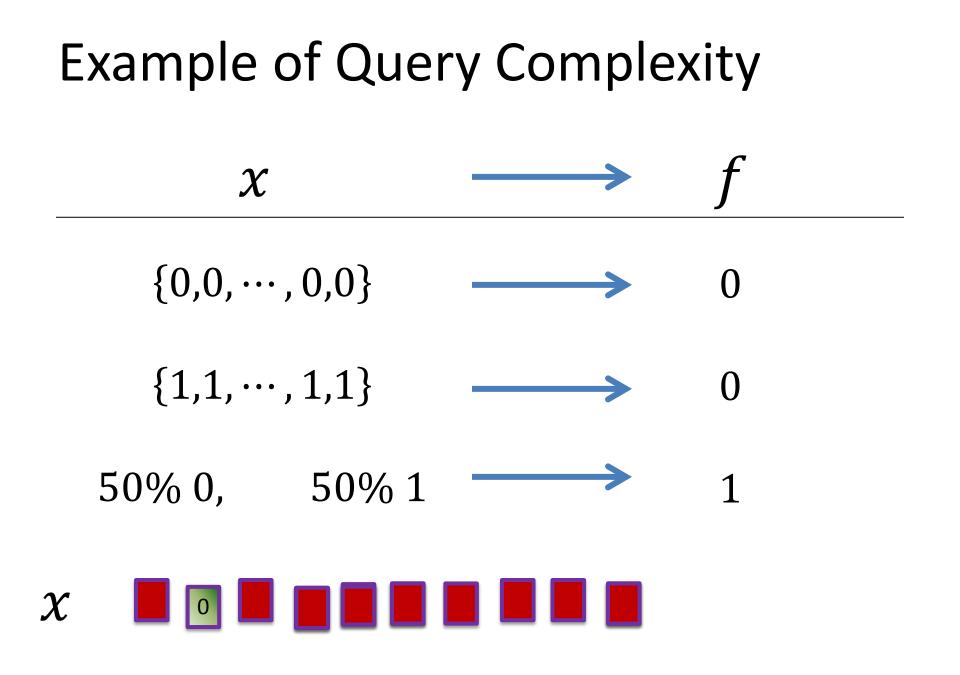
Oracle Model

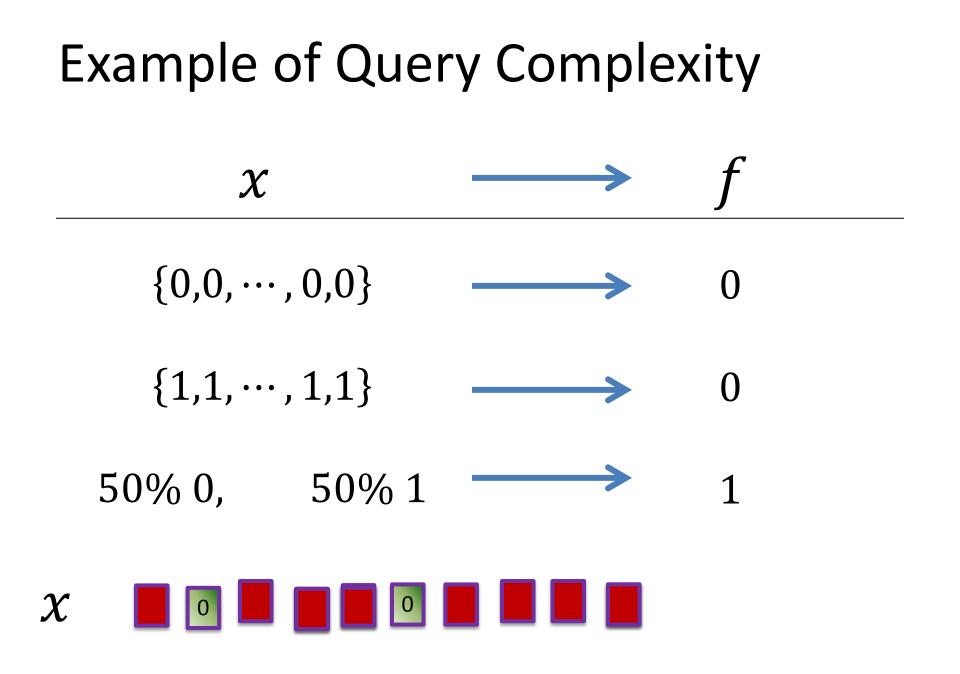
Goal: Determine the value of $f(x_1, ..., x_n)$ with inputs $x_i = \{0,1\}$ for a known function f, given an oracle for x

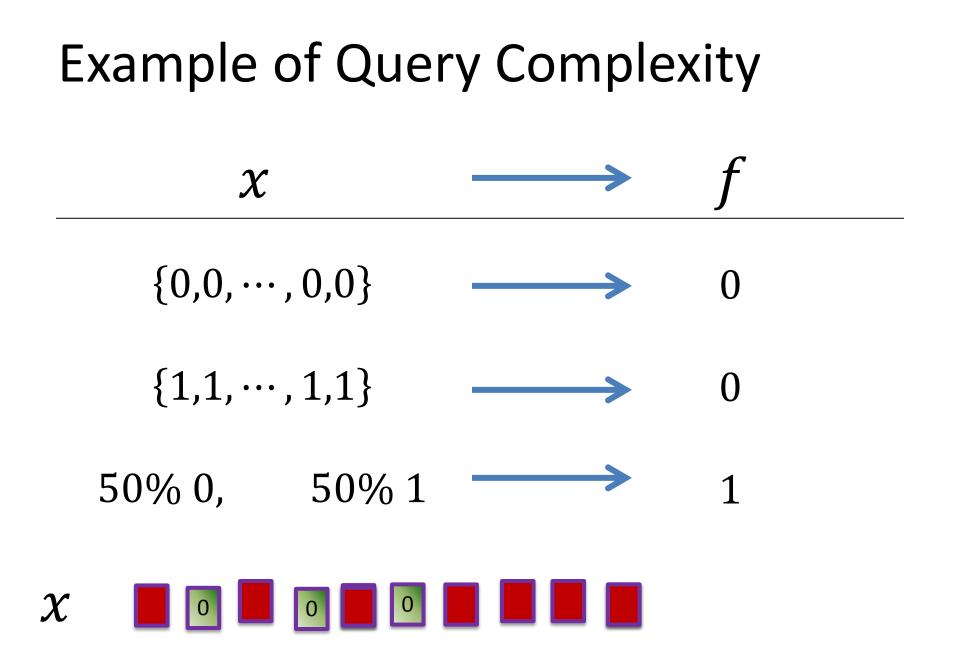


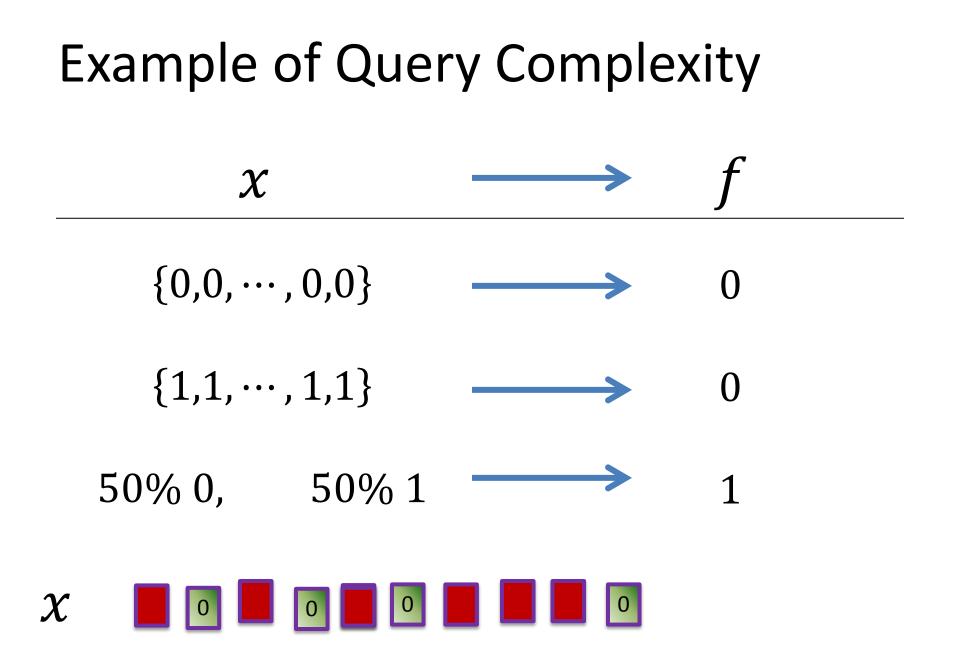
Care about Q(f) = "quantum query complexity" = # of quantum oracle uses (queries)

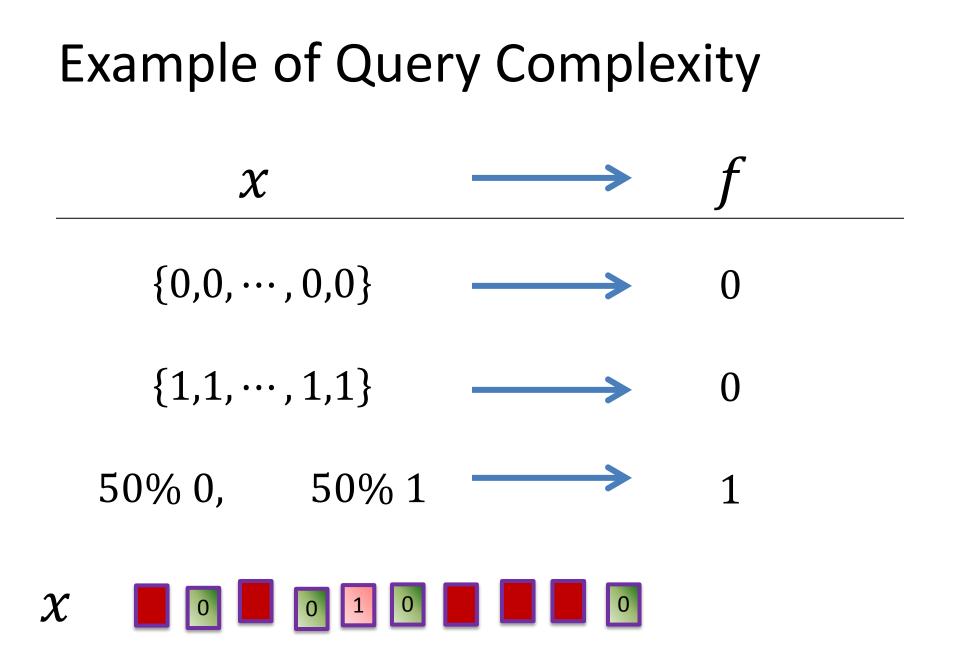




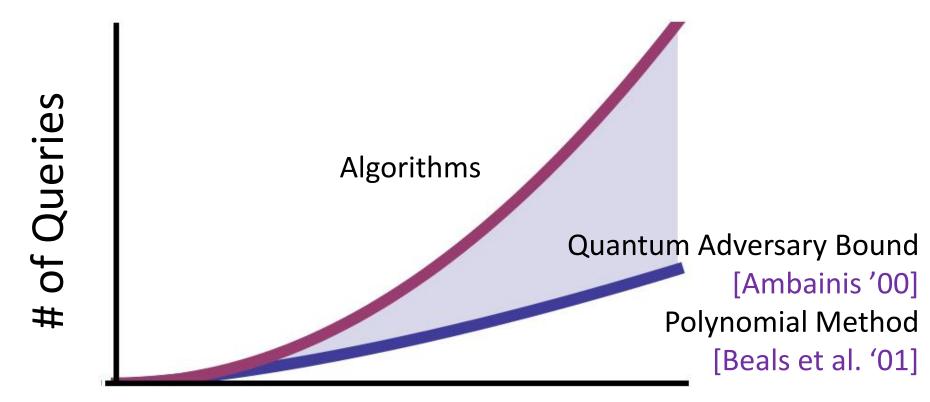






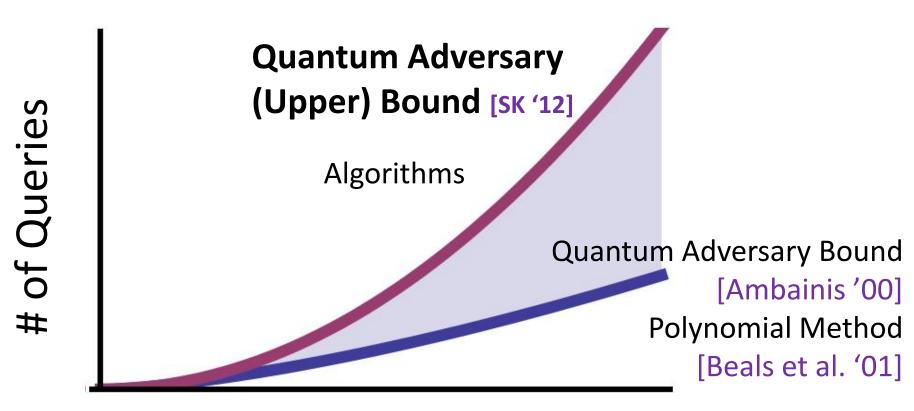


Quantum Query Complexity



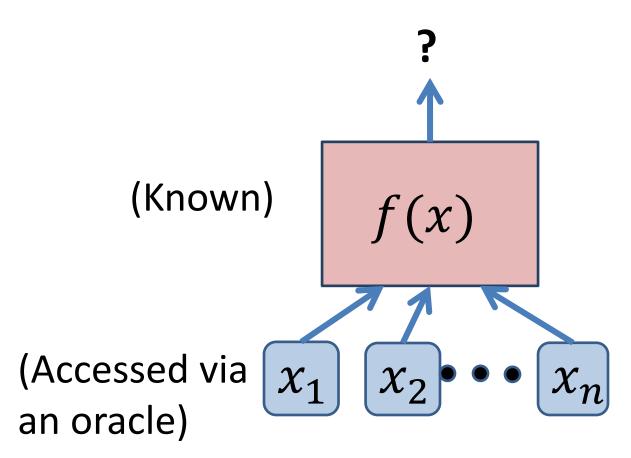
Size of Problem

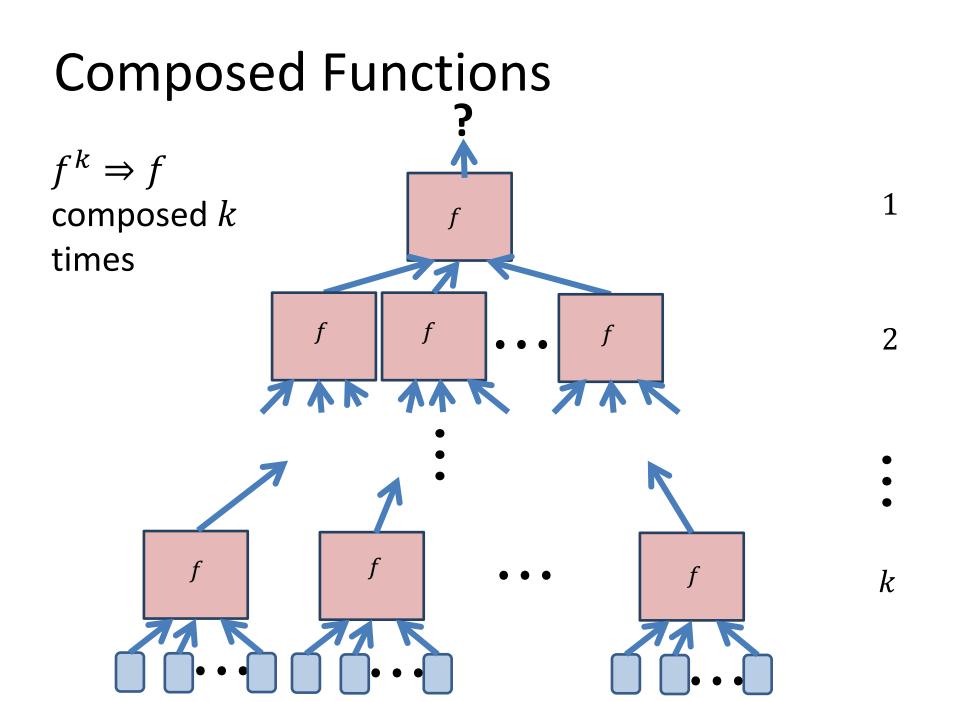
Quantum Query Complexity



Size of Problem

Composed Functions





Let f be a Boolean function.

Create an algorithm for f^k , with T queries, so learn $Q(f^k)$ is upper bounded by T.

Then Q(f) is upper bounded by $T^{1/k}$.

(Q(f) = quantum query complexity of f)

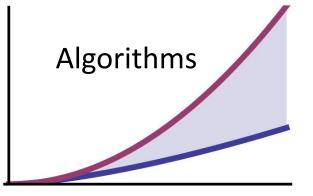
Let f be a Boolean function.

Create an algorithm for f^k , with T queries, so learn $Q(f^k)$ is upper bounded by T.

Then Q(f) is upper bounded by $T^{1/k}$.

Surprising:

• Does not give algorithm for *f*



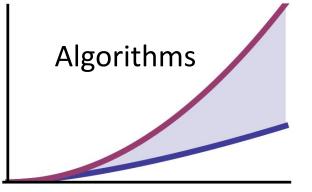
Let f be a Boolean function.

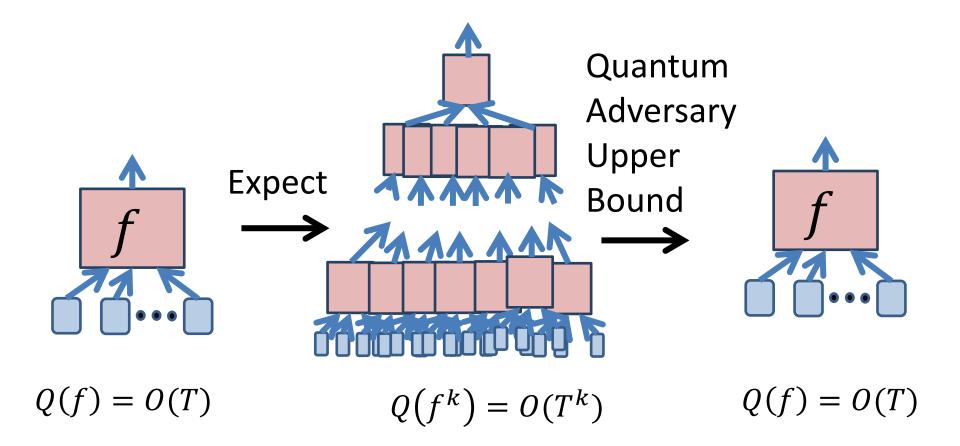
Create an algorithm for f^k , with T queries, so learn $Q(f^k)$ is upper bounded by T.

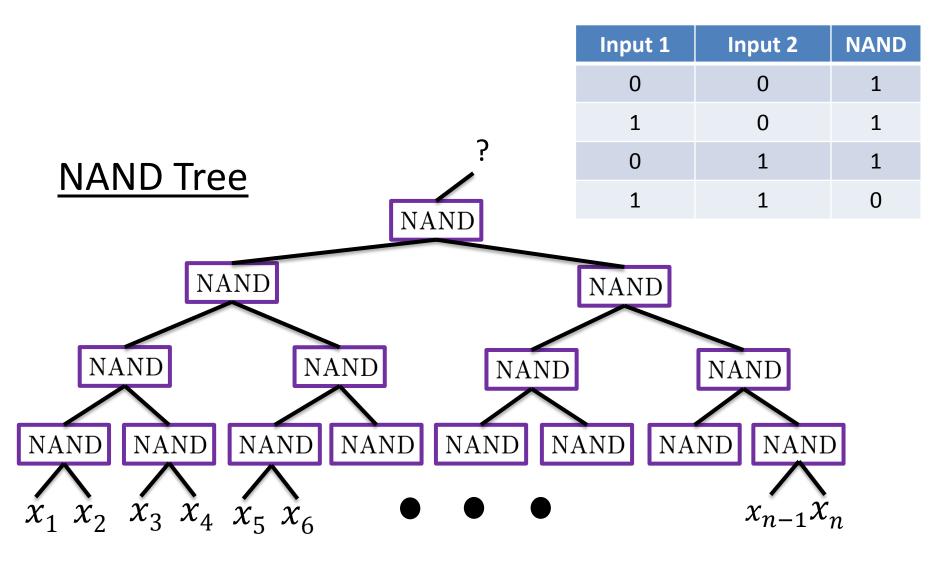
Then Q(f) is upper bounded by $T^{1/k}$.

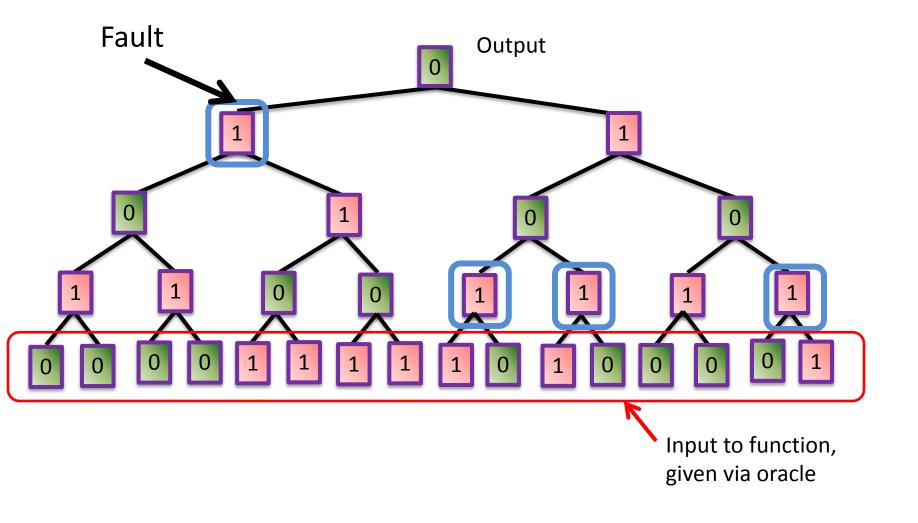
Surprising:

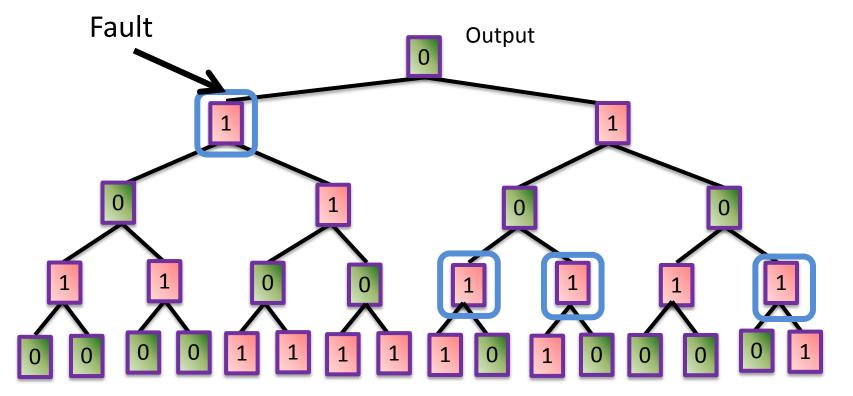
- Does not give algorithm for *f*
- This is a useful theorem!









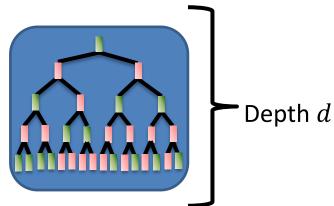


Another view point: 1-Fault NAND Tree is a game tree where the players are promised that they will only have to make one critical decision in the game.

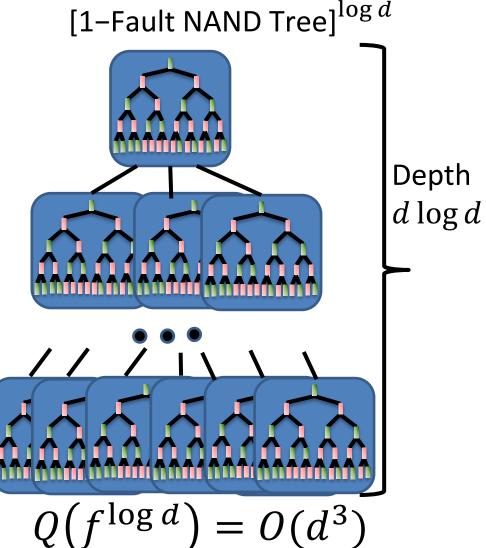
[Zhan, Hassidim, SK `12]

We found algorithm for k-fault tree using $(2^k \times depth^2)$ queries

1-Fault NAND Tree



 $Q(f) = O(d^2)$



1-Fault NAND Tree is a Boolean function

Quantum query complexity of $[1-Fault NAND Tree]^{\log d}$ is $O(d^3)$

Then the quantum query complexity of [1-Fault NAND Tree] is $O(d^{3/\log d}) = O(2^{3\log d/\log d}) = O(1)$

Proving the Quantum Adversary Upper Bound: Powerful Tools at work

 $ADV^{\pm}(f) = \theta(Q(f))$ [Reichardt, '09, '11]

 ADV^{\pm} = General Adversary Bound

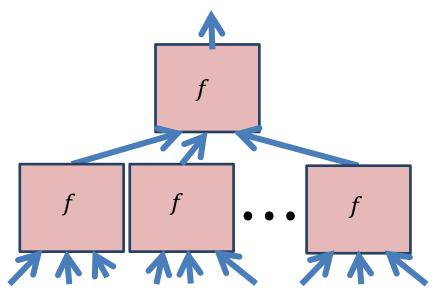
- Completely characterize query complexity.
- Semi-definite program (size scales exponentially with the # of inputs)
- Strong conditions on its behavior for composed functions.

Proving the Quantum Adversary Upper Bound: Powerful Tools at work

Lemma 2: $ADV^{\pm}(f^k) \ge ADV^{\pm}(f)^k$

[Hoyer, Lee, Spalek, '07, SK '11 (for partial functions)]

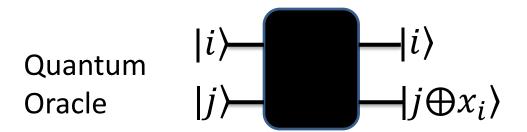
- Given a matrix that maximizes objective function of SDP of ADV[±](f), construct a matrix satisfying the SDP for f^k
- When f is partial, set entries corresponding to non-valid inputs to 0. Need to check that things go through



Long Story Short

- Quantum adversary upper bound can prove the existence of optimal quantum algorithms for
 - 1-Fault NAND Tree
 - Other constant fault trees
- I found explicit algorithms that match.

• Can we take advantage of the structure of quantum algorithms to prove other results?

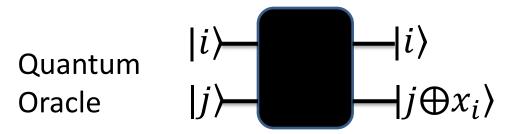


Pros of Oracle Model

• Have powerful tools to bound Q(f)

Cons of Oracle Model

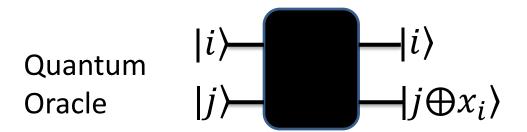
- Assumes you can implement oracle perfectly
- Black boxes usually not black
- Only takes into account oracle uses, not time or space necessary to solve problem



What if oracle has error?

• With probability *p* does nothing. [Regev, Schiff '08]

Conjecture: Require $p < Q(f)^{-1}$

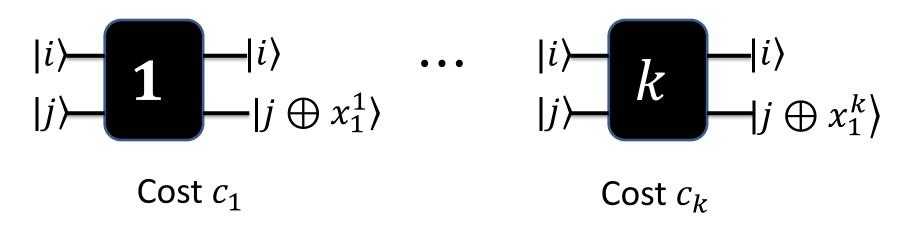


Pros of Oracle Model

• Have powerful tools to bound Q(f)

Cons of Oracle Model

- Assumes you can implement oracle perfectly
- Black boxes usually not black
- Only takes into account oracle uses, not time or space necessary to solve problem



More realistic model:

- Can use knowledge of *x* to create multiple oracles with different types of information
- Different operations take different times to implement

Long Story Short

- Quantum adversary upper bound can prove the existence of optimal quantum algorithms for
 - 1-Fault NAND Tree
 - Other constant fault trees
- I found explicit algorithms that match.

• Can we take advantage of the structure of quantum algorithms to prove other results?

Proving Quantum Adversary Upper Bound

Lemma 1: $ADV^{\pm}(f) = \theta(Q(f))$ [Reichardt, '09, '11]

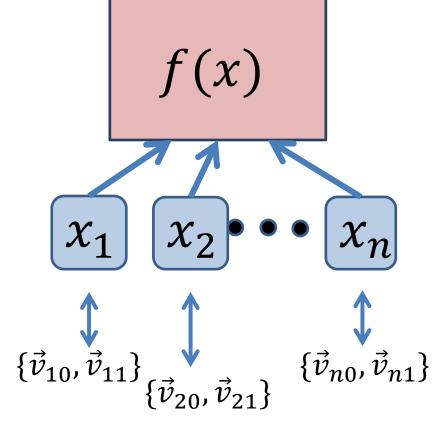
Lemma 2: $ADV^{\pm}(f^k) \ge ADV^{\pm}(f)^k$ [Hoyer, Lee, Spalek, '07, SK '11 (for partial functions)] **Proof** [SK '11]: $Q(f^k) = O(T)$ $ADV^{\pm}(f^k) = O(T)$ $ADV^{\pm}(f)^k = O(T)$

 $ADV^{\pm}(f) = O(T^{1/k})$

Matching Algorithm?

- For all c-Fault NAND Trees, O(1) query algorithms must exist.
- Can we find them?

Method 1: Span Programs [Zhan, Hassidim, SK '12, SK, '13]



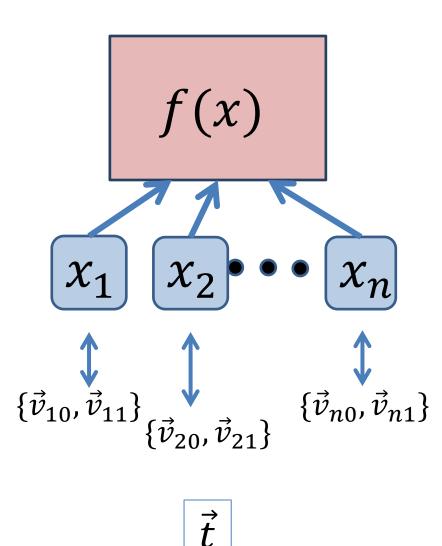
 \vec{t}

$$f(\vec{x}_i) = 1 \text{ iff}$$

$$\vec{t} \in SPAN\{\vec{v}_{1i}, \vec{v}_{2i}, \dots, \vec{v}_{ni}\}$$

Method 1: Span Programs [Zhan, Hassidim, SK '12,

SK, '13]



$$f(\vec{x}_i) = 1 \text{ iff}$$

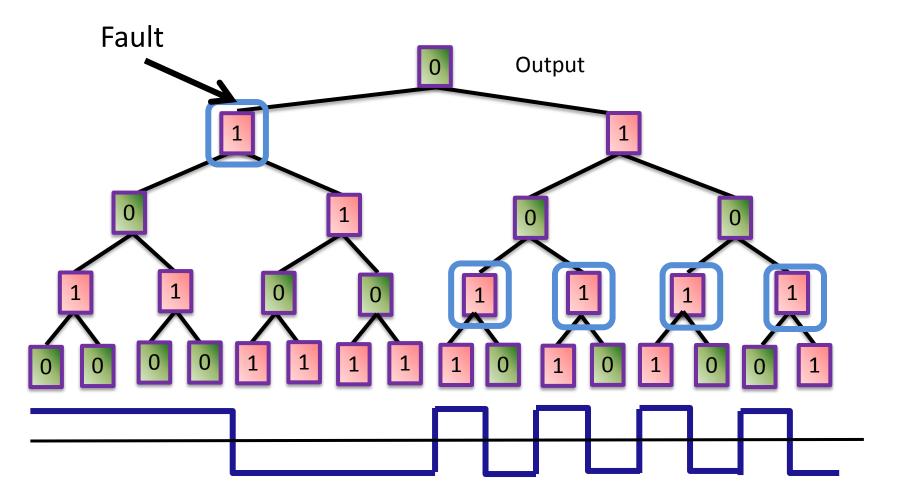
$$\vec{t} \in SPAN\{\vec{v}_{1i}, \vec{v}_{2i}, \dots, \vec{v}_{ni}\}$$

AND:

$$\vec{v}_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \vec{v}_{21} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \vec{t} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

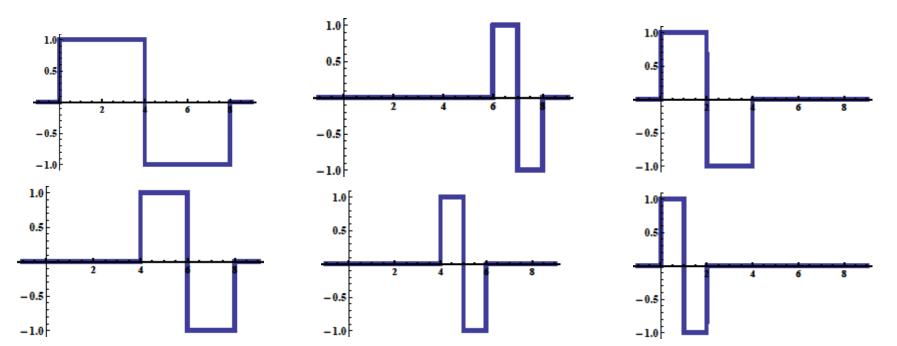
All other: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Method 2: Haar Transform

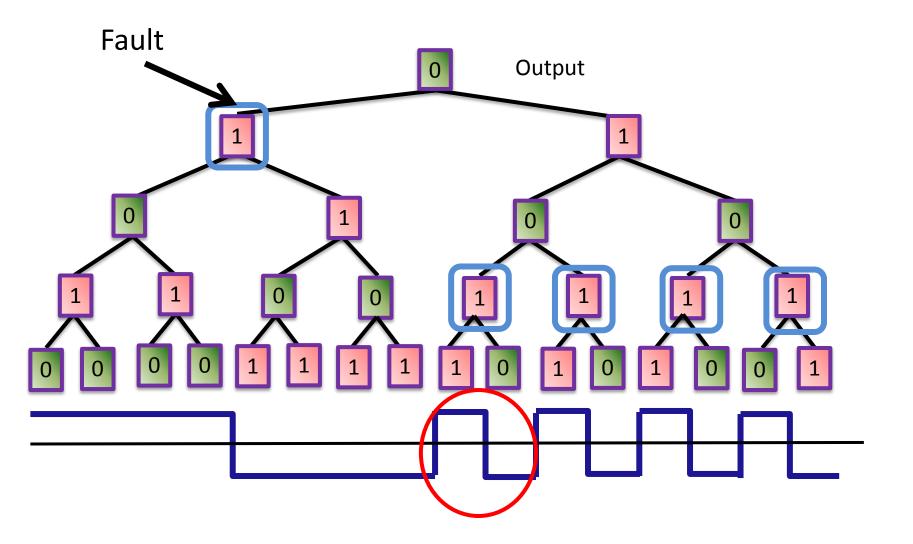


Method 2: Haar Transform

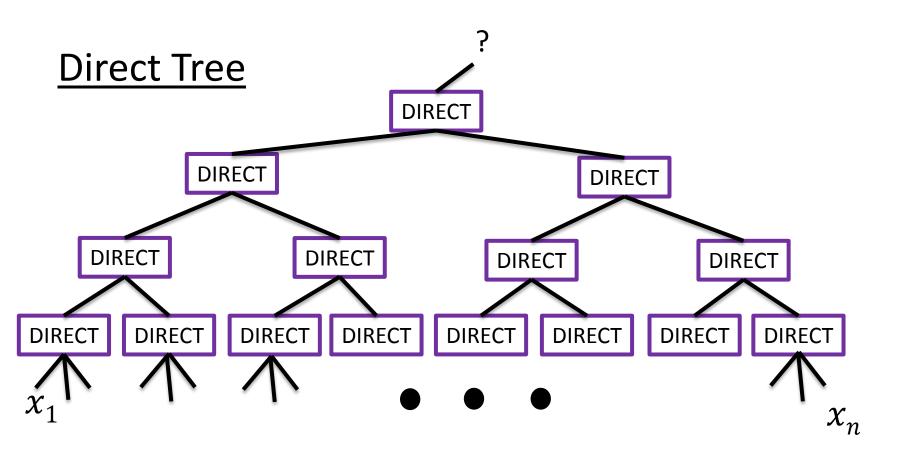
- Start in superposition: $\frac{1}{\sqrt{n}} \sum |i\rangle$.
- Apply Oracle. Phases=
- Measure in Haar Basis (efficient, Hoyer '97)



Method 2: Haar Transform



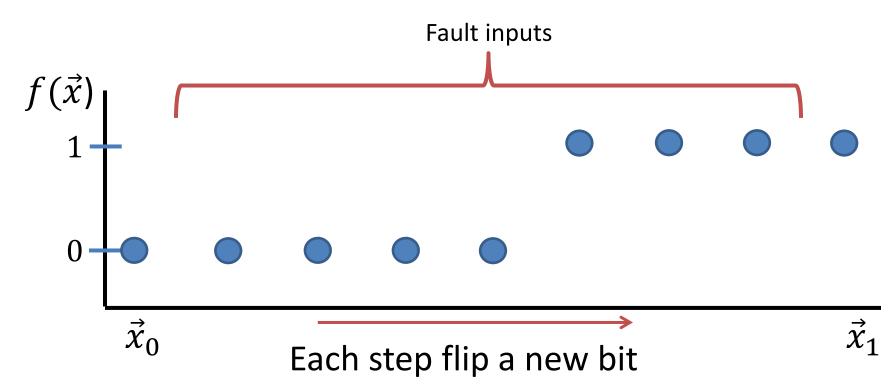
Extension: c-Fault Direct Tree



DIRECT \rightarrow generalization of monotonic.

Direct Functions

- Examples: Majority, NOT-Majority
- Generalization of monotonic



Open Questions: Unique Result?

- Classically is it possible to prove the existence of an algorithm without creating it?
 - Probabilistic/Combinatorial algorithms can prove that queries exist that will give an optimal algorithm, but would need to do a brute-force search to find them [Grebinski and Kucherov, '97]

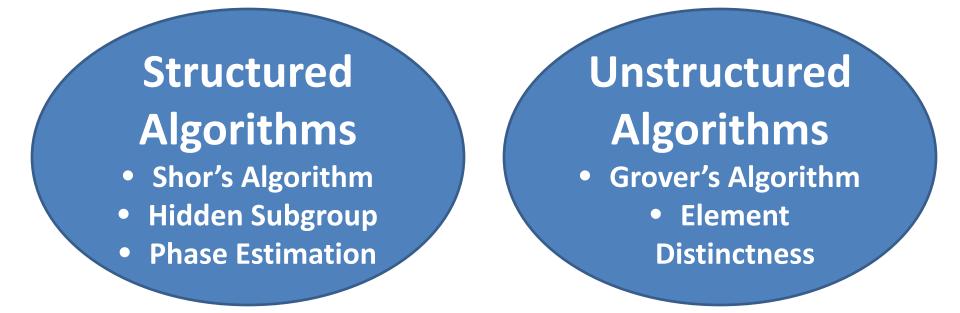
Application: Period Finding

0000	1 1 1 1	1 1 1	00

Summary and Open Questions

- Quantum adversary upper bound can prove the existence of quantum algorithms
 - 1-Fault NAND Tree
 - Other constant fault trees
- Are there other problems where this technique will be useful?
- Do the matching algorithms have other applications?
- Other Adversary SDP applications?

Types of Quantum Algorithms



By understanding the structure underlying quantum algorithms, can we find and design new algorithms?

Future Work

- This result uses powerful tools and deep understanding of quantum algorithm
- BUT model of computation is limited
- Use similar tools to understand new (and more realistic) models of quantum algorithms?