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Big Goal:

Designh new quantum
algorithms



Result

Quantum Adversary
Upper Bound:

Prove existence of



Outline

* Oracle Model and Query Complexity
 Quantum Adversary (Upper) Bound
* Application

— Prove existence of optimal algorithm using
Quantum Adversary (Upper) Bound

— Find explicit optimal algorithm



Oracle Model

Goal: Determine the value of f (x4, ..., x,,) for a known

function f, with an oracle for x
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Only care about # of oracle calls (queries)




Query Complexity

Algorithms

Quantum Adversary Bound
[Ambainis '00]

Polynomial Method

[Beals et al. ‘01]

# of Queries

Size of Problem



Query Complexity

Quantum Adversary
(Upper) Bound [sk ‘12]

Algorithms

Quantum Adversary Bound
[Ambainis '00]

Polynomial Method

[Beals et al. ‘01]

# of Queries

Size of Problem



Composed Functions
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Quantum Adversary Upper Bound

[SK’12]

Let f be a Boolean function.

Create an algorithm for £*, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T1/¥,

(Q(f) = quantum query complexity of f)



Quantum Adversary Upper Bound

[SK’12]

Let f be a Boolean function.

Create an algorithm for £, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T1/¥,

Surprising:

. , Algorithms
* Does not give algorithm for f




Quantum Adversary Upper Bound

[SK’12]

Let f be a Boolean function.

Create an algorithm for £, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T1/¥,

Surprising:
* Does not give algorithm for f
e This is a useful theorem!

Algorithms




Quantum Adversary Upper Bound

Quantum

Adversary

Upper A
; Expect Bound f

Q(f) = 0(T) o(f¥) = orh Q(f) = 0(T)



Example: 1-Fault NAND Tree
“input1 | nputz | NAND
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Example: 1-Fault NAND Tree

Fault

B Output




Example: 1-Fault NAND Tree

Fault

B Output

Another view point: 1-Fault NAND Tree is a game tree
where the players are promised that they will only
have to make one critical decision in the game.



Example: 1-Fault
[Zhan, Hassidim, SK "12]

We found algorithm for k-fault
tree using (k X depth?) queries

1-Fault NAND Tree

[ Depth d
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Q(f) = 0(d*)
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Quantum Adversary Upper Bound

1—Fault NAND Tree is a Boolean function

Quantum query complexity of [1—Fault NAND Tree]log d
is 0(d?)

Then the quantum query complexity of
|1—Fault NAND Tree] is

O(dB/log d) — 0(2310g d/log d) — 0(1)



Extension: c-Fault Direct Tree

?

Direct Tree

DIRECT

DIRECT

DIRECT | | DIRECT

DIRECT — generalization of monotonic.



Direct Functions

 Examples: Majority, NOT-Majority

* Generalization of monotonic
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*0 Each step flip a new bit



Proving Quantum Adversary Upper
Bound

Lemma 1: ADVE(f) = 8(Q(f)) [Reichardt, ‘09, '11]

Lemma 2: ADVE(f*) = ADVE(f)F
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)]

Proof [SK ‘11]:
Q(f*) = o0(T)

ADVE(f*) = 0(T)
ADVE(f)* = 0(T)

ADVE(f) = 0(T"¥)



Proving Quantum Adversary Upper

Bound

Lemma 2: ADVE(f*) > ADVE(f)¥

[Hoyer, Lee Spalek, ‘07, SK ‘11 (for partial functions)]

e Given a matrix satisfying
conditions of SDP for f,

construct a matrix satisfying
the SDP for f*¥ /7—\

* When f is partial, set entries L f

corresponding to non-valid
inputs to 0. Need to check AN
that things go through



Matching Algorithm?

* For all c-Fault Direct Trees, O(1) query
algorithms must exist.

e Can we find them?



Method 1: Span Programs

f(x)

xz .o t € SPAN{Dy;, Dyy, .., Ui}

{V10 V11} {Uno Un1}
{7720 U21}

t




Method 1: Span Programs

f(x)

1 vé%

{V10 V11}

{7720 7721}

t

{Uno Un1}

(&) = 1iff
t € SPAN{Vy;, Vyj, ovn) U}
AND:
- 1 = O z 1
V11 = 1 y Vg1 = 1 , L= 0

All other: (8)




Method 2: Haar Transform




Method 2: Haar Transform

. " 1 « .
Start in superposition: \/—%Z 7).

* Apply Oracle. Phases= = | U LN

e Measure in Haar Basis
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Method 2: Haar Transform
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Summary and Open Questions

 Quantum adversary upper bound can prove the
existence of quantum algorithms

— 1-Fault NAND Tree
— Other constant fault trees

* Are there other problems where the adversary
upper bound will be useful?

* Do the matching algorithms have other
applications?

* Can we take advantage of the structure of
guantum algorithms to prove other similar results



Open Questions: Unique Result?

e Classically is it possible to prove the existence
of an algorithm without creating it?

— Probabilistic/Combinatorial algorithms can prove
that queries exist that will give an optimal
algorithm, but would need to do a brute-force
search to find them [Grebinski and Kucherov, ‘97]



Application: Period Finding
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Summary and Open Questions

 Quantum adversary upper bound can prove
the existence of quantum algorithms

— 1-Fault NAND Tree
— Other constant fault trees

* Are there other problems where this
technique will be useful?

* Do the matching algorithms have other
applications?

 Other Adversary SDP applications?



Example of Query Complexity

x  —— f

{0,0,-,0,0} —> 0
1,1,-,1,1} —ms 0

50% O, 50%1 — 1

x BN pARRERE
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Example of Query Complexity
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Example of Query Complexity

x  —— f

{0,0,-,0,0} —> 0
1,1,-,1,1} —ms 0

50% O, 50%1 — 1
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Types of Quantum Algorithms

Structured Unstructured
Algorithms Algorithms

* Shor’s Algorithm * Grover’s Algorithm
e Hidden Subgroup * Element
* Phase Estimation Distinctness

By understanding the structure underlying quantum
algorithms, can we find and design new algorithms?



