Quantum Adversary
(Upper) Bound

Shelby Kimmel

Center for Theoretical Physics,
Massachusetts Institute of Technology

Sandia National Laboratories
Nov. 4, 2013

Big Goal:

Designh new quantum
algorithms

Result

Quantum Adversary
Upper Bound:

Prove existence of

Outline

* Oracle Model and Query Complexity
 Quantum Adversary (Upper) Bound
* Application

— Prove existence of optimal algorithm using
Quantum Adversary (Upper) Bound

— Find explicit optimal algorithm

Oracle Model

Goal: Determine the value of f (x4, ..., x,,) for a known

function f, with an oracle for x

Classical i
Oracle

|i

Xi

i)

|x;)

Quantum
Oracle |0

Q)

(quantum bounded error
query complexity)

Only care about # of oracle calls (queries)

Query Complexity

Algorithms

Quantum Adversary Bound
[Ambainis '00]

Polynomial Method

[Beals et al. ‘01]

of Queries

Size of Problem

Query Complexity

Quantum Adversary
(Upper) Bound [sk ‘12]

Algorithms

Quantum Adversary Bound
[Ambainis '00]

Polynomial Method

[Beals et al. ‘01]

of Queries

Size of Problem

Composed Functions

?

?

(Known) f(X)

(Accessed via l X1 I |x2 I- o

an oracle)

Composed Functions

fhsf
composed k
times

-

A

N\ E

Quantum Adversary Upper Bound

[SK’12]

Let f be a Boolean function.

Create an algorithm for £*, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T1/¥,

(Q(f) = quantum query complexity of f)

Quantum Adversary Upper Bound

[SK’12]

Let f be a Boolean function.

Create an algorithm for £, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T1/¥,

Surprising:

. , Algorithms
* Does not give algorithm for f

Quantum Adversary Upper Bound

[SK’12]

Let f be a Boolean function.

Create an algorithm for £, with T queries, so learn
Q(fk) is upper bounded by T.

Then Q(f) is upper bounded by T1/¥,

Surprising:
* Does not give algorithm for f
e This is a useful theorem!

Algorithms

Quantum Adversary Upper Bound

Quantum

Adversary

Upper A
; Expect Bound f

Q(f) = 0(T) o(f¥) = orh Q(f) = 0(T)

Example: 1-Fault NAND Tree
“input1 | nputz | NAND

O B Rk R

Example: 1-Fault NAND Tree

Fault

B Output

Example: 1-Fault NAND Tree

Fault

B Output

Another view point: 1-Fault NAND Tree is a game tree
where the players are promised that they will only
have to make one critical decision in the game.

Example: 1-Fault
[Zhan, Hassidim, SK "12]

We found algorithm for k-fault
tree using (k X depth?) queries

1-Fault NAND Tree

[Depth d

—

Q(f) = 0(d*)

NAND Tree

[1-Fault NAND Tree]'°8 ¢

CRR B T |
Iy nnl
T nnn

CRR B T i B | CR B T |
Iy ninintignsnnnlt
L nnnenmnnnnnn

A " (AN R B TR O R I T [T

TRhpnpinb nnnninh gnsnnnld
LA N nnn

Q(f'°8%) = 0(a*)

Depth
dlogd

Quantum Adversary Upper Bound

1—Fault NAND Tree is a Boolean function

Quantum query complexity of [1—Fault NAND Tree]log d
is 0(d?)

Then the quantum query complexity of
|1—Fault NAND Tree] is

O(dB/log d) — 0(2310g d/log d) — 0(1)

Extension: c-Fault Direct Tree

?

Direct Tree

DIRECT

DIRECT

DIRECT | | DIRECT

DIRECT — generalization of monotonic.

Direct Functions

 Examples: Majority, NOT-Majority

* Generalization of monotonic

f ()

1_

O_

o e e o e

- > -

*0 Each step flip a new bit

Proving Quantum Adversary Upper
Bound

Lemma 1: ADVE(f) = 8(Q(f)) [Reichardt, ‘09, '11]

Lemma 2: ADVE(f*) = ADVE(f)F
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)]

Proof [SK ‘11]:
Q(f*) = o0(T)

ADVE(f*) = 0(T)
ADVE(f)* = 0(T)

ADVE(f) = 0(T"¥)

Proving Quantum Adversary Upper

Bound

Lemma 2: ADVE(f*) > ADVE(f)¥

[Hoyer, Lee Spalek, ‘07, SK ‘11 (for partial functions)]

e Given a matrix satisfying
conditions of SDP for f,

construct a matrix satisfying
the SDP for f*¥ /7—\

* When f is partial, set entries L f

corresponding to non-valid
inputs to 0. Need to check AN
that things go through

Matching Algorithm?

* For all c-Fault Direct Trees, O(1) query
algorithms must exist.

e Can we find them?

Method 1: Span Programs

f(x)

xz .o t € SPAN{Dy;, Dyy, .., Ui}

{V10 V11} {Uno Un1}
{7720 U21}

t

Method 1: Span Programs

f(x)

1 vé%

{V10 V11}

{7720 7721}

t

{Uno Un1}

(&) = 1iff
t € SPAN{Vy;, Vyj, ovn) U}
AND:
- 1 = O z 1
V11 = 1 y Vg1 = 1 , L= 0

All other: (8)

Method 2: Haar Transform

Method 2: Haar Transform

. " 1 « .
Start in superposition: \/—%Z 7).

* Apply Oracle. Phases= = | U LN

e Measure in Haar Basis

1_[}_

Method 2: Haar Transform

Fault

o 0

(B (e] [E5)

(9 [(9 [[[

cloicicislelal

&

Summary and Open Questions

 Quantum adversary upper bound can prove the
existence of quantum algorithms

— 1-Fault NAND Tree
— Other constant fault trees

* Are there other problems where the adversary
upper bound will be useful?

* Do the matching algorithms have other
applications?

* Can we take advantage of the structure of
guantum algorithms to prove other similar results

Open Questions: Unique Result?

e Classically is it possible to prove the existence
of an algorithm without creating it?

— Probabilistic/Combinatorial algorithms can prove
that queries exist that will give an optimal
algorithm, but would need to do a brute-force
search to find them [Grebinski and Kucherov, ‘97]

Application: Period Finding

@ IEIEIIEIEIEIB

J

L

Summary and Open Questions

 Quantum adversary upper bound can prove
the existence of quantum algorithms

— 1-Fault NAND Tree
— Other constant fault trees

* Are there other problems where this
technique will be useful?

* Do the matching algorithms have other
applications?

 Other Adversary SDP applications?

Example of Query Complexity

x —— f

{0,0,-,0,0} —> 0
1,1,-,1,1} —ms 0

50% O, 50%1 — 1

x BN pARRERE

Example of Query Complexity

x —— f

{0,0,-,0,0} —> 0
1,1,-,1,1} —ms 0

50% O, 50%1 — 1

x RGN EEERRERN

Example of Query Complexity

x —— f

{0,0,-,0,0} —> 0
1,1,-,1,1} —ms 0

50% O, 50%1 — 1

x MR EENRN

Example of Query Complexity

x —— f

{0,0,-,0,0} —> 0
1,1,-,1,1} —ms 0

50% O, 50%1 — 1

vl Bl Bl el R R

Example of Query Complexity

x —— f

{0,0,-,0,0} —> 0
1,1,-,1,1} —ms 0

50% O, 50%1 — 1

x BEANEREERRRE

Example of Query Complexity

x —— f

{0,0,-,0,0} —> 0
1,1,-,1,1} —ms 0

50% O, 50%1 — 1

x HEAEEAERERE

Types of Quantum Algorithms

Structured Unstructured
Algorithms Algorithms

* Shor’s Algorithm * Grover’s Algorithm
e Hidden Subgroup * Element
* Phase Estimation Distinctness

By understanding the structure underlying quantum
algorithms, can we find and design new algorithms?

