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Big Goal: 

Design new quantum 
algorithms 



Types of Quantum Algorithms 

Structured 
Algorithms 

• Shor’s Algorithm 
• Hidden Subgroup 
• Phase Estimation 

Unstructured 
Algorithms 

• Grover’s Algorithm 
• Element 
Distinctness 

By understanding the structure underlying quantum 
algorithms, can we find and design new algorithms? 



Result 

Knowledge of 
Q. Algorithm 

Structure 

Non-optimal 
algorithm 

Optimal 
algorithm 

Prove existence of  



Outline 

• Oracle Model and Query Complexity 
• Quantum Adversary (Upper) Bound 
• Application 



Oracle Model 

 
Goal: Determine the value of 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) for a 
known function f, with an oracle for x 
 

 

 

 

 
 

Only care about # of oracle calls (queries) 

Q(𝑓𝑓) 
(quantum bounded error 

query complexity) 

Classical  
Oracle 

Quantum 
Oracle |𝑏𝑏 + 𝑥𝑥𝑖𝑖⟩ 

|𝑖𝑖⟩ |𝑖𝑖⟩ 
|𝑏𝑏⟩ 

𝑖𝑖 𝑥𝑥𝑖𝑖 
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Query Complexity 
# 

of
 Q

ue
rie

s 

Size of Problem 

Algorithms 

Quantum Adversary Bound, 
Polynomial Method 

Quantum Adversary 
(Upper) Bound  



Composed Functions 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛 

(Known) 

(Accessed via 
an oracle) 

? 



Composed Functions 
𝑓𝑓𝑘𝑘 ⇒ 𝑓𝑓 
composed 𝑘𝑘 
times 

⋯ ⋯ ⋯ 

𝑓𝑓 𝑓𝑓 

𝑓𝑓 

𝑓𝑓 

𝑓𝑓 

𝑓𝑓 𝑓𝑓 

? 
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⋯ 

⋯
 
⋯ 

⋯
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𝑘𝑘 



Quantum Adversary Upper Bound 

Let 𝑓𝑓 be a Boolean function. 
 
Create an algorithm for 𝑓𝑓𝑘𝑘, with 𝑇𝑇 queries, so learn 
𝑄𝑄 𝑓𝑓𝑘𝑘  is upper bounded by 𝑇𝑇. 
 
Then the quantum query complexity of 𝑓𝑓 is upper 
bounded by 𝑇𝑇1/𝑘𝑘. 

Surprising: 
• Does not give algorithm for 𝑓𝑓 
• This is a useful theorem!  

Algorithms 



Quantum Adversary Upper Bound 

𝑓𝑓 

𝑄𝑄 𝑓𝑓 ≼ 𝑇𝑇 

Expect 

𝑄𝑄 𝑓𝑓𝑘𝑘 ≼ 𝑇𝑇𝑘𝑘 

Quantum 
Adversary 
Upper 
Bound 𝑓𝑓 

𝑄𝑄 𝑓𝑓 ≼ 𝑇𝑇 



Example: 1-Fault NAND Tree 

NAND Tree  
 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥𝑛𝑛−1 𝑥𝑥𝑛𝑛 𝑥𝑥5 𝑥𝑥6 

? 

Input 1 Input 2 NAND 

0 0 1 

1 0 1 

0 1 1 

1 1 0 



Example: 1-Fault NAND Tree 

Fault Output 
0 

1 

1 

1 1 

0 0 0 

0 0 1 1 

0 0 0 0 1 1 1 1 1 0 1 0 0 

a 1 1 

1 

0 1 

Another view point: 1-Fault NAND Tree is a game tree 
where the players are promised that they will only 
have to make one critical decision in the game. 

0 



Example: 1-Fault NAND Tree 

1-Fault NAND Tree 

Depth 𝑑𝑑 

𝑄𝑄 𝑓𝑓 ≼ 𝑑𝑑2 

Depth 
𝑑𝑑 log𝑑𝑑 

1-Fault 
NAND Tree  
Composed 
log𝑑𝑑 times 

𝑄𝑄 𝑓𝑓log 𝑑𝑑 ≼ 𝑑𝑑3 

[Zhan, Hassidim, SK `12] 



Quantum Adversary Upper Bound 

1−Fault NAND Tree is a Boolean function 
 
Quantum query complexity of [1−Fault NAND Tree]log 𝑑𝑑 
is ≼ 𝑑𝑑3 
 
Then the quantum query complexity of  
[1−Fault NAND Tree] is  

𝑑𝑑3/ log 𝑑𝑑 = 23log 𝑑𝑑/ log 𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 



Proving Quantum Adversary Upper 
Bound 

Lemma 1: 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓) ≈ 𝑄𝑄(𝑓𝑓) [Reichardt, ‘09, ’11] 
 
Lemma 2: 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓𝑘𝑘) ≥ 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓)𝑘𝑘  
[Hoyer, Lee Spalek, ‘07, SK ‘11 (for partial functions)] 
 
Proof: 

𝑄𝑄 𝑓𝑓𝑘𝑘 = 𝑂𝑂 𝑇𝑇  
 

𝐴𝐴𝐴𝐴𝐴𝐴± 𝑓𝑓𝑘𝑘 = 𝑂𝑂(𝑇𝑇) 
 

𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓)𝑘𝑘 = 𝑂𝑂(𝑇𝑇) 
 

𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓) = 𝑂𝑂(𝑇𝑇1/𝑘𝑘) 



Extension: c-Fault Direct Tree 

NAND Tree  
 DIRECT 

DIRECT DIRECT 

DIRECT DIRECT DIRECT DIRECT 

DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT 

𝑥𝑥1 

? 

𝑥𝑥𝑛𝑛 

DIRECT → generalization of monotonic.  



Direct Functions 

• Examples: Majority, NOT-Majority 
• Generalization of monotonic  

𝑥⃗𝑥0 𝑥⃗𝑥1 

𝑓𝑓(𝑥⃗𝑥) 

0 

1 

Each step flip a new bit 



Algorithm? 

• For all c-Fault Direct Trees, constant query 
algorithms must exist. 



Span Programs 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛 

{𝑣⃗𝑣10, 𝑣⃗𝑣11} 
{𝑣⃗𝑣20, 𝑣⃗𝑣21} 

{𝑣⃗𝑣𝑛𝑛0, 𝑣⃗𝑣𝑛𝑛𝑛} 

𝑡𝑡 

  𝑓𝑓 𝑥⃗𝑥𝑖𝑖 = 1 iff 
𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆{𝑣⃗𝑣1𝑖𝑖 , 𝑣⃗𝑣2𝑖𝑖 , … , 𝑣⃗𝑣𝑛𝑛𝑖𝑖} 



1-Fault NAND Tree 

Fault 
Output 0 

1 

1 

1 1 

0 0 0 

0 0 1 1 

0 0 0 0 1 1 1 1 1 0 0 

a 1 

1 

1 

1 

0 1 1 0 



Haar Transform Algorithm 

• Start in superposition: 1
𝑛𝑛
∑ |𝑖𝑖⟩. 

• Apply Oracle. Phases= 
• Measure in Haar Basis 



1-Fault NAND Tree 

Fault 
Output 0 

1 

1 

1 1 

0 0 0 

0 0 1 1 

0 0 0 0 1 1 1 1 1 0 0 

a 1 

1 

1 

1 

0 1 1 0 



Period Finding 

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ⋯ 



Summary and Open Questions 
• Quantum adversary upper bound can prove the 

existence of quantum algorithms 
– 1-Fault NAND Tree 
– Other constant fault trees 

 
• Are there other problems where the adversary 

upper bound will be useful? 
• Do the matching algorithms have other 

applications? 
• Can we take advantage of the structure of 

quantum algorithms to prove other similar results 



Open Questions: Unique Result? 

• Classically is it possible to prove the existence 
of an algorithm without creating it? 
– Probabilistic/Combinatorial algorithms can prove 

that queries exist that will give an optimal 
algorithm, but would need to do a brute-force 
search to find them [Grebinski and Kucherov, ‘97] 



Span Programs 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛 

{𝑣⃗𝑣10, 𝑣⃗𝑣11} 
{𝑣⃗𝑣20, 𝑣⃗𝑣21} 

{𝑣⃗𝑣𝑛𝑛0, 𝑣⃗𝑣𝑛𝑛𝑛} 

𝑡𝑡 

  𝑓𝑓 𝑥⃗𝑥𝑖𝑖 = 1 iff 
𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆{𝑣⃗𝑣1𝑖𝑖 , 𝑣⃗𝑣2𝑖𝑖 , … , 𝑣⃗𝑣𝑛𝑛𝑖𝑖} 

NAND: 

𝑣⃗𝑣10 =
1
1

, 𝑣⃗𝑣20 =
0
1

, 𝑡𝑡 =
1
0

 



Summary and Open Questions 
• Quantum adversary upper bound can prove 

the existence of quantum algorithms 
– 1-Fault NAND Tree 
– Other constant fault trees 

 
• Are there other problems where this 

technique will be useful? 
• Do the matching algorithms have other 

applications? 
• Other Adversary SDP applications? 



Smaller is not always easier 



1-Fault NAND Tree 





Quantum Adversary Upper Bound 

Let 𝑓𝑓 be a Boolean function. 
 
Let 𝑄𝑄 𝑓𝑓𝑛𝑛 , (the quantum query complexity of 
𝑓𝑓𝑛𝑛), be 𝑂𝑂(𝐾𝐾). 
 
Then the quantum query complexity of 𝑓𝑓 is 
𝑂𝑂(𝐾𝐾1/𝑛𝑛) 

Surprising: 
• Does not give algorithm for 𝑓𝑓 
• This is a useful theorem!  

Algorithms 



Goal: Understand Power of Quantum 
Computers 

# 
of

 Q
ue

rie
s 

Size of Problem 

Algorithms 

Adversary Method, 
Polynomial Method 



New Tool 
# 

of
 Q

ue
rie

s 

Size of Problem 

Quantum Adversary 
Upper Bound  



Depth 
𝑑𝑑 

Quantum query complexity   = 𝑂𝑂(20.5𝑑𝑑) 

Randomized Classical Query Complexity= Ω(20.753𝑑𝑑) 

[Farhi et al ’08] 

[Saks and  
Widgerson ’86] 



Goal: Understand Power of Quantum 
Computers 

𝑓𝑓(𝑥𝑥) 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛 

(Known) 

(Unknown) 

? 

|𝑖𝑖⟩ |𝑥𝑥𝑖𝑖⟩ 

+ 

Tools 

𝑄𝑄 𝑓𝑓 = Quantum Query Complexity = # of queries to 
black box needed to evaluate 𝑓𝑓 w/ high probability 
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