
Quantum Adversary
(Upper) Bound

Shelby Kimmel
Massachusetts Institute of Technology

arXiv:1101.0797

http://arxiv.org/abs/1101.0797

Big Goal:

Design new quantum
algorithms

Types of Quantum Algorithms

Structured
Algorithms

• Shor’s Algorithm
• Hidden Subgroup
• Phase Estimation

Unstructured
Algorithms

• Grover’s Algorithm
• Element
Distinctness

By understanding the structure underlying quantum
algorithms, can we find and design new algorithms?

Result

Knowledge of
Q. Algorithm

Structure

Non-optimal
algorithm

Optimal
algorithm

Prove existence of

Outline

• Oracle Model and Query Complexity
• Quantum Adversary (Upper) Bound
• Application

Oracle Model

Goal: Determine the value of 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) for a
known function f, with an oracle for x

Only care about # of oracle calls (queries)

Q(𝑓𝑓)
(quantum bounded error

query complexity)

Classical
Oracle

Quantum
Oracle |𝑏𝑏 + 𝑥𝑥𝑖𝑖⟩

|𝑖𝑖⟩ |𝑖𝑖⟩
|𝑏𝑏⟩

𝑖𝑖 𝑥𝑥𝑖𝑖

Example

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓𝑓 𝑥𝑥

Query Complexity

of
 Q

ue
rie

s

Size of Problem

Algorithms

Quantum Adversary Bound,
Polynomial Method

Quantum Adversary
(Upper) Bound

Composed Functions

𝑓𝑓(𝑥𝑥)

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

(Known)

(Accessed via
an oracle)

?

Composed Functions
𝑓𝑓𝑘𝑘 ⇒ 𝑓𝑓
composed 𝑘𝑘
times

⋯ ⋯ ⋯

𝑓𝑓 𝑓𝑓

𝑓𝑓

𝑓𝑓

𝑓𝑓

𝑓𝑓 𝑓𝑓

?

1

⋯

⋯

⋯

⋯

2

𝑘𝑘

Quantum Adversary Upper Bound

Let 𝑓𝑓 be a Boolean function.

Create an algorithm for 𝑓𝑓𝑘𝑘, with 𝑇𝑇 queries, so learn
𝑄𝑄 𝑓𝑓𝑘𝑘 is upper bounded by 𝑇𝑇.

Then the quantum query complexity of 𝑓𝑓 is upper
bounded by 𝑇𝑇1/𝑘𝑘.

Surprising:
• Does not give algorithm for 𝑓𝑓
• This is a useful theorem!

Algorithms

Quantum Adversary Upper Bound

𝑓𝑓

𝑄𝑄 𝑓𝑓 ≼ 𝑇𝑇

Expect

𝑄𝑄 𝑓𝑓𝑘𝑘 ≼ 𝑇𝑇𝑘𝑘

Quantum
Adversary
Upper
Bound 𝑓𝑓

𝑄𝑄 𝑓𝑓 ≼ 𝑇𝑇

Example: 1-Fault NAND Tree

NAND Tree

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥𝑛𝑛−1 𝑥𝑥𝑛𝑛 𝑥𝑥5 𝑥𝑥6

?

Input 1 Input 2 NAND

0 0 1

1 0 1

0 1 1

1 1 0

Example: 1-Fault NAND Tree

Fault Output
0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 1 0 0

a 1 1

1

0 1

Another view point: 1-Fault NAND Tree is a game tree
where the players are promised that they will only
have to make one critical decision in the game.

0

Example: 1-Fault NAND Tree

1-Fault NAND Tree

Depth 𝑑𝑑

𝑄𝑄 𝑓𝑓 ≼ 𝑑𝑑2

Depth
𝑑𝑑 log𝑑𝑑

1-Fault
NAND Tree
Composed
log𝑑𝑑 times

𝑄𝑄 𝑓𝑓log 𝑑𝑑 ≼ 𝑑𝑑3

[Zhan, Hassidim, SK `12]

Quantum Adversary Upper Bound

1−Fault NAND Tree is a Boolean function

Quantum query complexity of [1−Fault NAND Tree]log 𝑑𝑑
is ≼ 𝑑𝑑3

Then the quantum query complexity of
[1−Fault NAND Tree] is

𝑑𝑑3/ log 𝑑𝑑 = 23log 𝑑𝑑/ log 𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Proving Quantum Adversary Upper
Bound

Lemma 1: 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓) ≈ 𝑄𝑄(𝑓𝑓) [Reichardt, ‘09, ’11]

Lemma 2: 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓𝑘𝑘) ≥ 𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓)𝑘𝑘
[Hoyer, Lee Spalek, ‘07, SK ‘11 (for partial functions)]

Proof:

𝑄𝑄 𝑓𝑓𝑘𝑘 = 𝑂𝑂 𝑇𝑇

𝐴𝐴𝐴𝐴𝐴𝐴± 𝑓𝑓𝑘𝑘 = 𝑂𝑂(𝑇𝑇)

𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓)𝑘𝑘 = 𝑂𝑂(𝑇𝑇)

𝐴𝐴𝐴𝐴𝐴𝐴±(𝑓𝑓) = 𝑂𝑂(𝑇𝑇1/𝑘𝑘)

Extension: c-Fault Direct Tree

NAND Tree
 DIRECT

DIRECT DIRECT

DIRECT DIRECT DIRECT DIRECT

DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT

𝑥𝑥1

?

𝑥𝑥𝑛𝑛

DIRECT → generalization of monotonic.

Direct Functions

• Examples: Majority, NOT-Majority
• Generalization of monotonic

𝑥⃗𝑥0 𝑥⃗𝑥1

𝑓𝑓(𝑥⃗𝑥)

0

1

Each step flip a new bit

Algorithm?

• For all c-Fault Direct Trees, constant query
algorithms must exist.

Span Programs

𝑓𝑓(𝑥𝑥)

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

{𝑣⃗𝑣10, 𝑣⃗𝑣11}
{𝑣⃗𝑣20, 𝑣⃗𝑣21}

{𝑣⃗𝑣𝑛𝑛0, 𝑣⃗𝑣𝑛𝑛𝑛}

𝑡𝑡

 𝑓𝑓 𝑥⃗𝑥𝑖𝑖 = 1 iff
𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆{𝑣⃗𝑣1𝑖𝑖 , 𝑣⃗𝑣2𝑖𝑖 , … , 𝑣⃗𝑣𝑛𝑛𝑖𝑖}

1-Fault NAND Tree

Fault
Output 0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 0

a 1

1

1

1

0 1 1 0

Haar Transform Algorithm

• Start in superposition: 1
𝑛𝑛
∑ |𝑖𝑖⟩.

• Apply Oracle. Phases=
• Measure in Haar Basis

1-Fault NAND Tree

Fault
Output 0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 0

a 1

1

1

1

0 1 1 0

Period Finding

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ⋯

Summary and Open Questions
• Quantum adversary upper bound can prove the

existence of quantum algorithms
– 1-Fault NAND Tree
– Other constant fault trees

• Are there other problems where the adversary

upper bound will be useful?
• Do the matching algorithms have other

applications?
• Can we take advantage of the structure of

quantum algorithms to prove other similar results

Open Questions: Unique Result?

• Classically is it possible to prove the existence
of an algorithm without creating it?
– Probabilistic/Combinatorial algorithms can prove

that queries exist that will give an optimal
algorithm, but would need to do a brute-force
search to find them [Grebinski and Kucherov, ‘97]

Span Programs

𝑓𝑓(𝑥𝑥)

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

{𝑣⃗𝑣10, 𝑣⃗𝑣11}
{𝑣⃗𝑣20, 𝑣⃗𝑣21}

{𝑣⃗𝑣𝑛𝑛0, 𝑣⃗𝑣𝑛𝑛𝑛}

𝑡𝑡

 𝑓𝑓 𝑥⃗𝑥𝑖𝑖 = 1 iff
𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆{𝑣⃗𝑣1𝑖𝑖 , 𝑣⃗𝑣2𝑖𝑖 , … , 𝑣⃗𝑣𝑛𝑛𝑖𝑖}

NAND:

𝑣⃗𝑣10 =
1
1

, 𝑣⃗𝑣20 =
0
1

, 𝑡𝑡 =
1
0

Summary and Open Questions
• Quantum adversary upper bound can prove

the existence of quantum algorithms
– 1-Fault NAND Tree
– Other constant fault trees

• Are there other problems where this

technique will be useful?
• Do the matching algorithms have other

applications?
• Other Adversary SDP applications?

Smaller is not always easier

1-Fault NAND Tree

Quantum Adversary Upper Bound

Let 𝑓𝑓 be a Boolean function.

Let 𝑄𝑄 𝑓𝑓𝑛𝑛 , (the quantum query complexity of
𝑓𝑓𝑛𝑛), be 𝑂𝑂(𝐾𝐾).

Then the quantum query complexity of 𝑓𝑓 is
𝑂𝑂(𝐾𝐾1/𝑛𝑛)

Surprising:
• Does not give algorithm for 𝑓𝑓
• This is a useful theorem!

Algorithms

Goal: Understand Power of Quantum
Computers

of

 Q
ue

rie
s

Size of Problem

Algorithms

Adversary Method,
Polynomial Method

New Tool

of
 Q

ue
rie

s

Size of Problem

Quantum Adversary
Upper Bound

Depth
𝑑𝑑

Quantum query complexity = 𝑂𝑂(20.5𝑑𝑑)

Randomized Classical Query Complexity= Ω(20.753𝑑𝑑)

[Farhi et al ’08]

[Saks and
Widgerson ’86]

Goal: Understand Power of Quantum
Computers

𝑓𝑓(𝑥𝑥)

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

(Known)

(Unknown)

?

|𝑖𝑖⟩ |𝑥𝑥𝑖𝑖⟩

+

Tools

𝑄𝑄 𝑓𝑓 = Quantum Query Complexity = # of queries to
black box needed to evaluate 𝑓𝑓 w/ high probability

	Quantum Adversary �(Upper) Bound
	Big Goal:
	Types of Quantum Algorithms
	Result
	Outline
	Oracle Model
	Example
	Query Complexity
	Composed Functions
	Composed Functions
	Slide Number 11
	Quantum Adversary Upper Bound
	Example: 1-Fault NAND Tree
	Example: 1-Fault NAND Tree
	Example: 1-Fault NAND Tree
	Quantum Adversary Upper Bound
	Proving Quantum Adversary Upper Bound
	Extension: c-Fault Direct Tree
	Direct Functions
	Algorithm?
	Span Programs
	1-Fault NAND Tree
	Haar Transform Algorithm
	1-Fault NAND Tree
	Period Finding
	Summary and Open Questions
	Open Questions: Unique Result?
	Span Programs
	Summary and Open Questions
	Smaller is not always easier
	1-Fault NAND Tree
	Slide Number 32
	Quantum Adversary Upper Bound
	Goal: Understand Power of Quantum Computers
	New Tool
	Slide Number 36
	Goal: Understand Power of Quantum Computers

