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Goal: Understand Power of Quantum 
Computers 
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Tools 

𝑄𝑄 𝑓𝑓 = Quantum Query Complexity = # of queries to 
black box needed to evaluate 𝑓𝑓 w/ high probability 



Goal: Understand Power of Quantum 
Computers 

# 
of

 Q
ue

rie
s 

Size of Problem 

Algorithms 

Adversary Method, 
Polynomial Method 

Quantum Adversary 
Upper Bound  



Outline 

• Quantum Adversary Upper Bound 
• Example: “1-Fault NAND Tree” 
• Summary and Open Problems 



Quantum Adversary Upper Bound 
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Quantum Adversary Upper Bound 

Let 𝑓𝑓 be a Boolean function. 
 
Create an algorithm for 𝑓𝑓𝑛𝑛, so learn 𝑄𝑄 𝑓𝑓𝑛𝑛 = 𝑂𝑂(𝐾𝐾). 
 
Then the quantum query complexity of 𝑓𝑓 is 𝑂𝑂(𝐾𝐾1/𝑛𝑛) 

Surprising: 
• Does not give algorithm for 𝑓𝑓 
• This is a useful theorem!  

Algorithms 



Quantum Adversary Upper Bound 

𝑓𝑓 

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑇𝑇) 

Expect 

𝑄𝑄 𝑓𝑓𝑛𝑛 = 𝑂𝑂(𝑇𝑇𝑛𝑛) 

Quantum 
Adversary 
Upper 
Bound 𝑓𝑓 

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑇𝑇) 



1-Fault NAND Tree 

NAND Tree  
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1-Fault NAND Tree 
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1-Fault NAND Tree 

1-Fault NAND Tree 

Depth 𝑑𝑑 

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑑𝑑2) 

Depth 
𝑑𝑑 log𝑑𝑑 

1-Fault NAND Tree  
Composed log𝑑𝑑 times 

𝑄𝑄 𝑓𝑓log 𝑑𝑑 = 𝑂𝑂(𝑑𝑑3) 

[Zhan, Hassidim, K. 2012] 



Quantum Adversary Upper Bound 

1−Fault NAND Tree is a Boolean function 
 
Quantum query complexity of [1−Fault NAND Tree]log 𝑑𝑑 
is 𝑂𝑂(𝑑𝑑3) 
 
Then the quantum query complexity of  
[1−Fault NAND Tree] is 
𝑂𝑂 𝑑𝑑3/ log 𝑑𝑑 = O 23log 𝑑𝑑/ log 𝑑𝑑 = 𝑂𝑂(1) 



1-Fault NAND Tree 

1-Fault NAND Tree 

Depth 𝑑𝑑 

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑑𝑑2) 

Depth 
𝑑𝑑 log𝑑𝑑 

1-Fault NAND Tree  
Composed log𝑑𝑑 times 

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑑𝑑3) 

[Zhan, Hassidim, K. 2012] 



Algorithm? 

• Found a matching algorithm using span 
programs 

• Found a related algorithm that uses quantum 
Haar Transform 
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Summary and Open Questions 
• Quantum adversary upper bound can prove 

the existence of quantum algorithms 
– 1-Fault NAND Tree 
– Other constant fault trees 

 
• Are there other problems where this 

technique will be useful? 
• Do the matching algorithms have other 

applications? 
• Other Adversary SDP applications? 



Smaller is not always easier 



1-Fault NAND Tree 





Quantum Adversary Upper Bound 

Let 𝑓𝑓 be a Boolean function. 
 
Let 𝑄𝑄 𝑓𝑓𝑛𝑛 , (the quantum query complexity of 
𝑓𝑓𝑛𝑛), be 𝑂𝑂(𝐾𝐾). 
 
Then the quantum query complexity of 𝑓𝑓 is 
𝑂𝑂(𝐾𝐾1/𝑛𝑛) 

Surprising: 
• Does not give algorithm for 𝑓𝑓 
• This is a useful theorem!  

Algorithms 
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Depth 
𝑑𝑑 

Quantum query complexity   = 𝑂𝑂(20.5𝑑𝑑) 

Randomized Classical Query Complexity= Ω(20.753𝑑𝑑) 

[Farhi et al ’08] 

[Saks and  
Widgerson ’86] 
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