What does the effective resistance of electrical circuits have to do with quantum algorithms?

Shelby Kimmel
Stacey Jeffery (Caltech)
(Simplest) Answer

st – connectivity: is there a path from s to t?
(Simplest) Answer

st – connectivity: is there a path from s to t?
(Simplest) Answer

We can turn this into a circuit by attaching leads to s and t, and putting $1 \, \Omega$ resistors wherever edges exist.
(Simplest) Answer

Speed of quantum algorithm for st-connectivity depends on effective resistance of this circuit! (Lower effective resistance -> quicker detection of path)

[Belovs, Reichardt ‘12]
Applications of st-Connectivity

• Important (social) network problem
• Problem is a useful subroutine for many problems
 – Is there a length-k path? [Belovs, Reichardt ‘12]
 – Is a graph a forest? [Cade, Montanaro, Belovs ‘16]
 – Is a graph bipartite? [Cade, Montanaro, Belovs ‘16]
Applications of st-Connectivity

- Important (social) network problem
- Problem is a useful subroutine for many problems
 - Is there a length-k path?
 - Is a graph a forest?
 - Is a graph bipartite?
 - Boolean formula evaluation

NEW
Our results:

Improved analysis of quantum algorithm for st-connectivity (with even more effective resistance than before!)

Use this algorithm to get improved quantum algorithm for Boolean formula evaluation
Outline

• Previous algorithm for st-connectivity
• Improved analysis for planar graphs
• Application to Boolean formulas
Black Box Algorithm

- $e_i = 1$ if i^{th} edge is there
- $e_i = 0$ if edge is not there
$R(G)$ is the effective resistance of the circuit created by attaching a voltage between s and t, and 1 Ω resistors at all edges.
Previous Quantum Algorithm

st-connectivity algorithm time/queries ~

\[\sqrt{\max_{G: \text{connected}} R(G)} \sqrt{\max_{G: \text{not connected}} |G|} \]

\# of edges in graph \(G \)

[Belovs, Reichardt '12]
Planar Graph

Planar

Not Planar
Planar Graph Dual(ish)
Planar Graph Dual(ish)
Planar Graph Dual(ish)

- If an edge is not present in G, it is present in G'
Planar Graph Dual(ish)

- If there is an st-path, there is no $s't'$-path.
- If there is an $s't'$-path, there is no st-path.
Planar Graph Dual(ish)
Planar Graph Dual(ish)

\(R(G') \) is the effective resistance of the circuit created by attaching a voltage between \(s' \) and \(t' \), and 1 \(\Omega \) resistors at all edges.
Improved Quantum Algorithm for st-connectivity

Planar graph† st-connectivity algorithm time/queries =

\[\sqrt{\max_{G: \text{connected}} R(G)} \sqrt{\max_{G: \text{not connected}} R(G')} } \]

† with \(s, t \) on external face
Application to Boolean Formulas

- **AND**: outputs 1 if all inputs are 1
- **OR**: outputs 1 if any input is 1
- **Value**: 0 or 1

The diagram represents a function $f(x)$ with inputs x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, and x_9. The function is constructed using AND and OR gates.
Application to Boolean Formulas

\(\land \): outputs 1 if all inputs are 1

\(s \) and \(t \) are connected if all subgraphs are connected
Application to Boolean Formulas

\[\bigwedge \quad \text{AND: outputs 1 if all inputs are 1} \]

\[\bigvee \quad \text{OR: outputs 1 if any input is 1} \]

\[s \text{ and } t \text{ are connected if all subgraphs are connected} \]

\[s \text{ and } t \text{ are connected if any subgraph is connected} \]
Application to Boolean Formulas

\[f(x) = \bigwedge \left(\bigvee \left(\bigwedge \left(\bigvee \left(\bigwedge \left(\bigvee \left(\bigwedge x_1, x_2, x_3, x_4 \right) \right) \right) \right) \right) \]
Application to Boolean Formulas

\[f(x) = x_1 \land (x_2 \lor x_3 \land (x_4 \lor x_5 \land (x_6 \lor (x_7 \land (x_8 \land x_9)))) \]
Application to Boolean Formulas

\[f(x) = x_1 \land (x_2 \lor x_3 \land x_4) \land x_{10} \]
If we put edges where $x_i = 1$, s and t are connected iff $f(x) = 1$!
Application to Boolean Formulas

- The graph associated with a formula will always be planar, with s, t on external face.
- Can use our st-connectivity algorithm! Time required depends on the effective resistance of circuit corresponding to corresponding graph.
Open Questions

• When is our algorithm optimal for Boolean formulas?
• Can we extend these ideas to non-planar graphs?
• Are there other problems that reduce to st-connectivity?
• What is the classical time/query complexity of st-connectivity? Can we relate it to effective resistance?