Path Detection: A Quantum Computing Primitive

Shelby Kimmel

University of Maryland
Things Quantum Computers are Good at:

- Factoring
 - Exponential speed-up over known classical algorithms
 - Can be used to break most commonly used public key crypto systems
- Simulating chemistry
 - Exponential speed-up over known classical algorithms
 - Useful for drug development, better carbon sequestration
“How will a quantum computer help me do X?”
“How will a quantum computer help me do X?”

- Need quantum algorithmic primitives
“How will a quantum computer help me do X?”

• Need quantum algorithmic primitives
 1. Apply to a wide range of problems
 2. Easy to understand and analyze (without knowing quantum mechanics)
“How will a quantum computer help me do X?”

- Need quantum algorithmic primitives
 1. Apply to a wide range of problems
 2. Easy to understand and analyze (without knowing quantum mechanics)

- Ex: Searching unordered list of n items
 - Classically, takes $O(n)$ time
 - Quantumly, takes $O(\sqrt{n})$ time
“How will a quantum computer help me do X?”

• Need quantum algorithmic primitives
 1. Apply to a wide range of problems
 2. Easy to understand and analyze (without knowing quantum mechanics)

 – Ex: Searching unordered list of n items
 – Classically, takes $O(n)$ time
 – Quantumly, takes $O(\sqrt{n})$ time

• New primitive: st-connectivity
Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive
 1. Applies to a wide range of problems
 2. Easy to understand (without knowing quantum mechanics)
st-connectivity

st – connectivity: is there a path from s to t?
st-connectivity

st – connectivity: is there a path from *s* to *t*?
Black Box Model

Edge label

\[e_i = 1 \text{ if } i^{th} \text{ edge is there} \]
\[e_i = 0 \text{ if edge is not there} \]

Let \(\mathcal{H} \) be the set of graphs \(G \) that the black box might contain.
Figure of Merit

- Query Complexity
 - Number of uses (queries) of the black box
 - All other operations are free
 - Always a lower bound on time complexity (situation when other operations are not free)
 - Often (but not always) a good proxy for time complexity

- Under mild assumption, for our algorithm, quantum query complexity \cong quantum time complexity

- In query model it is easier to prove
 - Quantum-to-classical speed-ups
 - Optimality
Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive
 1. Applies to a wide range of problems
 2. Easy to understand (without knowing quantum mechanics)
Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive
 1. Applies to a wide range of problems
 • Evaluating Boolean formulas reduces to st-connectivity
 2. Easy to understand (without knowing quantum mechanics)
Boolean Formulas

AND:
- Outputs 1 if all inputs are 1

OR:
- Outputs 1 if any input is 1

Value of x_i: 0 or 1

- $f(x) = \bigwedge \bigvee \bigwedge \bigvee \bigwedge \bigvee \bigwedge \bigvee x_{10}$
- $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9$
Boolean Formulas

\[f(x) = \bigvee \bigwedge x_i \]

Input label
Boolean Formulas

Read-once: x_i's not fan out
Boolean Formulas

Read-once: x_i’s not fan out

Read-many: x_i have fan out
Boolean Formula Applications

- Logic
- Designing electrical circuits
- Game theory (deciding who will win a game)
- Combinatorics and graph problems
- Linear programming
- Testing potential solution to an NP-complete problem
Application to Boolean Formulas

\(\land \): outputs 1 if all input subformulas have value 1

\(s \) and \(t \) are connected if all subgraphs are connected
Application to Boolean Formulas

\land \textit{AND}: outputs 1 if all input subformulas have value 1

s and t are connected if all subgraphs are connected

\lor \textit{OR}: outputs 1 if any input subformulas have value 1

s and t are connected if any subgraph is connected
Application to Boolean Formulas

The diagram represents a Boolean function $f(x)$ with variables $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}$. The function is composed of conjunctions and disjunctions, forming a tree structure. The graph on the right illustrates the connectivity of the variables with edges indicating dependencies or influences.
Application to Boolean Formulas

- If we put edges where \(x_i = 1 \), \(s \) and \(t \) are connected iff \(f(x) = 1 \).
Application to Boolean Formulas

\[f(x) = \bigwedge (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}) \]

\[s \rightarrow t \]

Graph showing the application of Boolean formulas.
Application to Boolean Formulas

\[f(x) = x_1 \land (x_2 \lor (x_3 \land x_4)) \land (x_5 \lor (x_6 \land (x_7 \lor (x_8 \land x_9)))) \land x_{10} \]
Outline:

A. Introduction to Quantum Algorithms and st-connectivity
B. st-connectivity makes a good algorithmic primitive
 1. Applies to a wide range of problems
 • Evaluating Boolean formulas reduces to st-connectivity
 2. Easy to understand (without knowing quantum mechanics)
Planar Graph

Planar

Not Planar
Planar Graph including \((s, t)\) Edge

Can add an edge from \(s\) to \(t\) and graph is still planar

YES
Planar Graph including \((s, t)\) Edge

Can add an edge from \(s\) to \(t\) and graph is still planar

Graph created during reduction from Boolean formula problem has this property by construction.
Effective Resistance
Effective Resistance
Effective Resistance

Valid flow:
• 1 unit in at s
• 1 unit out at t
• At all other nodes, zero net flow
Effective Resistance

Flow energy: \[\sum_{\text{edges}} (\text{flow on edge})^2 \]
Effective Resistance

Flow energy: \[\sum_{\text{edges}} (\text{flow on edge})^2 \]

Effective Resistance: \(R_{s,t}(G) \)
Smallest energy of any valid flow from \(s \) to \(t \) on \(G \).
Effective Resistance

Flow energy:
\[\sum_{edges} (\text{flow on edge})^2 \]

Effective Resistance: \(R_{s,t}(G) \)
Smallest energy of any valid flow from \(s \) to \(t \) on \(G \).

Properties of \(R_{s,t}(G) \)
- Small if many short paths from \(s \) to \(t \)
- Large if few long paths from \(s \) to \(t \)
- Infinite if \(s \) and \(t \) not connected
Algorithm Performance:

Planar graph† st-connectivity algorithm complexity =

$$O\left(\sqrt{\max_{G \in \mathcal{H}: \text{connected}} R_{s,t}(G)} \sqrt{\max_{G \in \mathcal{H}: \text{not connected}} R_{s',t'}(G')}\right)$$

† with \((s, t)\) added also planar
Graph G'
Graph G'
Graph G'
Graph G'
Graph G'

- If an edge is not present in G, it is present in G'
Graph G'

- If there is an st-path, there is no $s't'$-path.
- If there is an $s't'$-path, there is no st-path.
Algorithm Performance:

Planar graph† st-connectivity algorithm complexity =

$$O\left(\sqrt{\max_{G \in \mathcal{H}:\text{connected}} R_{s,t}(G)} \sqrt{\max_{G \in \mathcal{H}:\text{not connected}} R_{s',t'}(G')}\right)$$

† with \((s, t)\) added also planar
Example

What is quantum complexity of deciding $\text{AND}(x_1, x_2, ..., x_N)$, promised
- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.
What is quantum complexity of deciding $\text{AND}(x_1, x_2, \ldots, x_N)$, promised
• All $x_i = 1$, or
• At least \sqrt{N} input variables are 0.

What is quantum complexity of deciding if
• s and t are connected, or
• At least \sqrt{N} edges are missing
Example

What is quantum complexity of deciding if

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: \text{connected}} R_{s,t}(G)} \quad \sqrt{\max_{G \in \mathcal{H}: \text{not connected}} R_{s',t'}(G')}$$
What is quantum complexity of deciding if

- s and t are connected, or
- At least \sqrt{N} edges are missing

\[
\max_{G \in \mathcal{H} : \text{connected}} R_{s,t}(G) \geq \max_{G \in \mathcal{H} : \text{not connected}} R_{s^i,t^i}(G')
\]

\[
\max_{G \in \mathcal{H} : \text{connected}} R_{s,t}(G) = N
\]
What is quantum complexity of deciding if
- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H} : \text{connected}} R_{s,t}(G)} \quad \sqrt{\max_{G \in \mathcal{H} : \text{not connected}} R_{s',t'}(G')}$$
What is quantum complexity of deciding if
• \(s \) and \(t \) are connected, or
• At least \(\sqrt{N} \) edges are missing

\[
\sqrt{\max_{G \in \mathcal{H}: \text{connected}} R_{s,t}(G)} \quad \sqrt{\max_{G \in \mathcal{H}: \text{not connected}} R_{s',t'}(G')} = \frac{1}{\sqrt{N}}
\]
What is quantum complexity of deciding if
• s and t are connected, or
• At least \sqrt{N} edges are missing

Quantum complexity is $O\left(N^{1/4}\right)$
Example

What is quantum complexity of deciding if
• s and t are connected, or
• At least \sqrt{N} edges are missing

\[
\sqrt{\max_{G \in \mathcal{H}: \text{connected}} R_{s,t}(G)} \quad \sqrt{\max_{G \in \mathcal{H}: \text{not connected}} R_{s',t'}(G')}
\]

Quantum complexity is $O(N^{1/4})$

Randomized classical complexity is $\Omega(N^{1/2})$
Algorithm Performance:

Planar graph† st-connectivity algorithm complexity =

\[
O\left(\sqrt{\max_{G \in \mathcal{H} : \text{connected}} R_{s,t}(G,w)} \sqrt{\max_{G \in \mathcal{H} : \text{not connected}} R_{s',t'}(G',w)}\right)
\]

† with \((s, t)\) added also planar
Performance

- Improvement over previous quantum st-connectivity algorithm
 - Find a family of graphs with N edges such that our algorithm uses $O(1)$ queries, previous best algorithm uses $O(N^{1/4})$ queries
Performance

- Improvement over previous quantum st-connectivity algorithm
 - Find a family of graphs with N edges such that our algorithm uses $O(1)$ queries, previous best algorithm uses $O(N^{1/4})$ queries
 - Balloon graph: our algorithm uses $O(N^{1/2})$ queries, previous best algorithm uses $O(N)$ queries
Performance

• Improvement over previous quantum st-connectivity algorithm
 – Find a family of graphs with N edges such that our algorithm uses $O(1)$ queries, previous best algorithm uses $O(N^{1/4})$ queries
 – Balloon graph: our algorithm uses $O(N^{1/2})$ queries, previous best algorithm uses $O(N)$ queries
 – Series-parallel graphs, our algorithm uses $O(N^{1/2})$ queries, previous best algorithm uses $O(N)$ queries
Performance

• Comparison to previous Boolean formula algorithm
 – Match celebrated result that $O(\sqrt{N})$ queries required for total read-once Boolean formulas, but proof is simple!
 – Extend super-polynomial quantum to classical speed-up for families of NAND-trees [ZKH’12, K’13]
Open Questions

• When is our algorithm optimal for Boolean formulas? (Especially partial/read-many formulas)
• Can we extend these ideas to non-planar graphs? (Yes!)
• Are there other problems that reduce to st-connectivity?
• What is the classical time/query complexity of st-connectivity in the black box model?
• Does our reduction from formulas to connectivity give good classical algorithms too?
• Can we use this graph dual idea to improve other quantum algorithms?

arXiv:1704.00765, with Stacey Jeffery
Other interests

- Statistical inference and machine learning applied to quantum characterization problems
- Quantum complexity theory, especially quantum versions of NP
Boolean Formulas

- **AND**: outputs 1 if all inputs are 1
- **OR**: outputs 1 if any input is 1

\[f(x) = \bigwedge \bigvee x_i \]

where \(x_i \) are values 0 or 1
Boolean Formulas

- **AND**: outputs 1 if all inputs are 1
- **OR**: outputs 1 if any input is 1
- **x_i**: Value 0 or 1

The diagram illustrates a Boolean function $f(x)$ represented as a tree structure. The function is evaluated through a series of AND and OR operations on the inputs x_1, x_2, \ldots, x_9. The final output node x_{10} is determined by the overall AND of the intermediate OR results.
Boolean Formulas

- **AND**: outputs 1 if all inputs are 1
- **OR**: outputs 1 if any input is 1
- Value 0 or 1

The diagram represents a function $f(x)$ with inputs $x_1, x_2, x_5, x_6, x_7, x_8, x_9, x_{10}$. The tree structure illustrates the logic operations for computing the output based on the inputs.
Boolean Formulas

\land: outputs 1 if all inputs are 1

\lor: outputs 1 if any input is 1

x_1: Value 0 or 1

$f(x) = 1$