Robust Single-Qubit Process Calibration via Robust Phase Estimation

Shelby Kimmel, Guang Hao Low, Ted Yoder

Arxiv: 1502.02677

JOINT CENTER FOR QUANTUM INFORMATION AND COMPUTER SCIENCE

- All gates have errors
- State preparation has errors
- Measurements has errors

E

Ф

- All gates have errors
- State preparation has errors
- Measurements has errors

[Monroe Lab]

- All gates have errors
- State preparation has errors
- Measurements has errors

Want to quickly determine gate errors, and then tune to fix.

lacksquare

•

E

Φ

Outline

- 1. Motivation for Robust Phase Estimation
- 2. Control Errors for Single Qubit Gates
- 3. Comparison to Existing Methods
- 4. Robust Phase Estimation
- 5. Application to Parameter Estimation

Ideal Unitary U

Outline

- 1. Motivation for Robust Phase Estimation
- 2. Control Errors for Single Qubit Gates
- 3. Comparison to Existing Methods
- 4. Robust Phase Estimation
- 5. Application to Parameter Estimation

Ad hoc Rabi – Ramsey Sequences.

Gate Control

Process Tomography [Chuang & Nielsen '97]

Gate Control

Gate Control

Process Tomography

- Need perfect state preparation and measurement
- Need perfect additional gates
- Time consuming: need to learn 12 parameters to extract ϕ and ϵ

Gate Control

Randomized Benchmarking Tomography

Gate Control

Randomized Benchmarking

- Don't need perfect state preparation and measurement
- Must be able to perform single-qubit Cliffords (although not perfectly)
- Time consuming: need to learn 9 parameters to extract ϕ and ϵ

Gate Control

Gate Control

Gate Set Tomography

[Blume-Kohout et al '13]

Gate Control

Gate Set Tomography

[Blume-Kohout et al '13]

- Don't need to assume anything about state preparation, measurements or other gates
- Extremely Inefficient: need to learn ~25 parameters to extract ϕ and ϵ

Gate Control

Gate Control

Robust Phase Estimation

- Don't need perfect state preparation and measurement
- No additional gates*
- Learn ϕ and ϵ with optimal efficiency
- Non-adaptive
- Accommodates additional errors like depolarizing noise.

Outline

- 1. Motivation for Robust Phase Estimation
- 2. Control Errors for Single Qubit Gates
- 3. Comparison to Existing Methods
- 4. Robust Phase Estimation
- 5. Application to Parameter Estimation

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}, \qquad \frac{1+\cos k\theta}{2}$$

For k in \mathbb{Z} , each in time k

Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{\sqrt{T}}$

$$\frac{1 + \sin k\theta}{2}, \qquad \frac{1 + \cos k\theta}{2}$$
For k in Z, each in time k

$$k = 1$$

$$\frac{1 + \sin k\theta}{2}, \qquad \frac{1 + \cos k\theta}{2}$$
For k in Z, each in time k
$$k = 1 \qquad k = 2$$

$$\frac{1 + \sin k\theta}{2}, \qquad \frac{1 + \cos k\theta}{2}$$
For k in Z, each in time k
$$k = 1 \qquad k = 2 \qquad k = 4$$

Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{T}$ Optimal – by information theory.

$$\frac{1+\sin\theta}{2} + \delta_{k1}, \qquad \frac{1+\cos\theta}{2} + \delta_{k2}$$

Using only $k = 1$ can't get an accurate estimate!

Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{T}$, as long as $|\delta_k| < \frac{1}{\sqrt{8}} \approx .35$ for all k.

Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{T}$, as long as $|\delta_k| < \frac{1}{\sqrt{8}} \approx .35$ for all k. ...but need upper bound on size of δ to know how many extra samples to take.

Proof Sketch

Binomial variable variance: np(1-p)

Variance small when p = 0,1

When
$$k\theta \sim \left\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\right\}$$
,

 $\frac{1+\sin k\theta}{2} \quad \text{or} \quad \frac{1+\cos k\theta}{2} \quad \text{equals 1 or 0}$

Even with δ errors, "heads" probability still close to 1 or 0

Proof Sketch

Binomial variable variance: np(1-p)Variance largest when $p \approx 1/2$ When $k\theta \sim \left\{\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}\right\}$, $\frac{1+\sin k\theta}{2}$, $\frac{1+\cos k\theta}{2}$ equals $\frac{1}{2} \pm \frac{1}{\sqrt{8}}$

If δ error is $> \frac{1}{\sqrt{8}}$, can trick you into excluding the wrong half.

Outline

- 1. Motivation for Robust Phase Estimation
- 2. Control Errors for Single Qubit Gates
- 3. Comparison to Existing Methods
- 4. Robust Phase Estimation
- 5. Application to Parameter Estimation

Want 2-outcome experiments with probabilities like:

Want 2-outcome experiments with probabilities:

 $A = \pi(1 + \epsilon)$ is total amplitude of rotation

Want 2-outcome experiments with probabilities:

Want 2-outcome experiments with probabilities:

Heisenberg limited! Estimate of ϵ with standard deviation $\sigma(\epsilon) \sim \frac{1}{N}$, where N is the number of times \widetilde{U} is applied.

Want 2-outcome experiments with probabilities: $\begin{array}{l} \widetilde{U} \\ \widetilde{V} \\ \widetilde{$

Heisenberg limited! Estimate of ϕ with standard deviation $\sigma(\phi) \sim \frac{1}{N}$, where N is the number of times \widetilde{U} is applied.

Additional Errors

Looks like need perfect $|\langle 0|\widetilde{U}^k| \rightarrow \rangle|^2$

Additional Errors

Looks like need perfect $|\langle 0|\tilde{U}^k| \rightarrow \rangle|^2$

All of the following errors simply contribute to δ errors

- Imperfect state preparation
- Imperfect measurement
- Additional errors like depolarizing errors
- Imperfect Z rotation

Example: State Preparation Errors Add to δ errors

Want: $|\langle 0|\widetilde{U}^k| \rightarrow \rangle|^2$

Suppose can only prepare $|0\rangle$, measure $|0\rangle$. No perfect X-rotation, so can't prepare $|\rightarrow\rangle$. Instead prepare ρ'_{\rightarrow}

Example: State Preparation Errors Add to δ errors

Want: $|\langle 0|\widetilde{U}^k| \rightarrow \rangle|^2$

Suppose can only prepare $|0\rangle$, measure $|0\rangle$. No perfect X-rotation, so can't prepare $|\rightarrow\rangle$. Instead prepare ρ'_{\rightarrow}

Trace Distance: $D(\rho, \sigma)$ = maximum difference in probability between any two experiments on states ρ, σ .

Thus if use ρ'_{\rightarrow} instead of $|\rightarrow\rangle$, δ error changes by at most $D(\rho'_{\rightarrow}, |\rightarrow\rangle\langle\rightarrow|)$

Example: State Preparation Errors Add to δ errors

Want experiment with outcome probability: $|\langle 0|\tilde{U}^k| \rightarrow \rangle|^2 = \operatorname{tr}\left(M_0\tilde{\mathcal{U}}^k(\rho_{\rightarrow})\right)$

Have experiment with outcome probability: $tr(M_{\circ}\tilde{\mathcal{U}}^{k}(o'_{\circ}))$

Example: Depolarizing Errors

$$\Lambda(\rho) = \gamma \rho + (1 - \gamma) \mathbb{I}/2$$

$$\frac{1+\sin k\theta}{2} + \delta_{k1} \rightarrow \frac{1}{2} + \gamma^k \left(\frac{\sin k\theta}{2} + \delta_{k1}\right)$$

$$\delta_{k1} \rightarrow (1 - \gamma^k) \frac{\sin k\theta}{2} + \gamma^k \delta_{k1}$$

Depolarizing Errors Cause δ errors to increase with increasing k \rightarrow eventually will overwhelm .35 bound.

Robust phase estimation will give most accurate estimate possible, up to the k where passes .35 bound. (No longer efficient).

Additional Errors

Looks like need perfect $|\langle 0|\tilde{U}^k| \rightarrow \rangle|^2$

All of the following errors simply contribute to δ errors

- Imperfect state preparation
- Imperfect measurement
- Additional errors like depolarizing errors
- Imperfect Z rotation

Can incorporate any error, as long as can bound how much that error will shift your outcome probability (and total shift is less than .35)

Bounding δ Errors

Need upper bounds on

- Size of ϕ , ϵ
- Trace distance between ideal and true state preparation
- "Trace distance" between ideal and true measurement

We provide simple (length-0/1) sequences to upper bound these quantities.

Sample Procedure

- 1. Bound δ errors
- 2. Choose # of samples to take each round based on size of δ errors and desired precision
- 3. Robust phase estimation on ϵ .
- 4. Robust phase estimation on ϕ .
- 5. Use controls to correct errors, repeat.

Sample Procedure

- 1. Bound δ errors
- 2. Choose # of samples to take each round based on size of δ errors and desired precision
- 3. Robust phase estimation on ϵ .
- 4. Robust phase estimation on θ .
- 5. Use controls to correct errors, repeat.

[BBN]

- Don't need perfect state preparation and measurement
- No additional gates*
- Learn ϕ and ϵ with optimal efficiency
- Non-adaptive
- Accommodates additional errors like depolarizing noise.

Open Questions

- Multi-Qubit Operations?
- Connection to Randomized Benchmarking?
- Connection to Gate Set Tomography?
- What if figure of merit is number of experiments?

Think this might be useful?

[BBN]

Arxiv: 1502.02677

Sample Procedure

- 1. Bound δ errors
- 2. Choose # of samples to take each round based on size of δ errors and desired precision
- 3. Robust phase estimation on ϵ .
- 4. Robust phase estimation on θ .
- 5. Use controls to correct errors, repeat.

If bad δ bounds, ϵ , θ estimates accurate, just not as precise.

Sample Procedure

- 1. Bound δ errors
- 2. Choose # of samples to take each round based on size of δ errors and desired precision
- 3. Robust phase estimation on ϵ .
- 4. Robust phase estimation on θ .
- 5. Use controls to correct errors, repeat.

If bad δ bounds, ϵ , θ estimates accurate, just not as precise.

e.g. Controls have 5 digits of precision. Estimate ϵ , θ to 5 digits of precision, but after correcting still inaccurate at 3 digits of precision. δ errors could be cause.

[Monroe Lab]

- All gates are off
- State preparation is off
- Measurements are off

Want to quickly determine imperfections in gate controls and then tune to fix.

Proof Sketch

Want 2-outcome experiments with probabilities:

Don't have perfect state prep and measurement? OK! Just add to δ error.

Want 2-outcome experiments with probabilities:

Have depolarizing errors? OK! Just add to δ errors.

Want 2-outcome experiments with probabilities:

Heisenberg limited! Estimate of ϵ with standard deviation $\sigma(\epsilon) \sim \frac{1}{N}$, where N is the number of times \widetilde{U} is applied.