
Robust Characterization of 
Quantum Processes 

Shelby Kimmel 
Center for Theoretical Physics, MIT 

Marcus da Silva, Colm Ryan, Blake Johnson, Tom Ohki 
Raytheon BBN Technologies 

JQI – Monday Dec. 16 



Why don’t we have a working 
quantum computer? 

Too Many Errors 



Can Improve Operations with Better 
Characterization of Errors 

“Depolarizing error” 

“Extra rotation around z-axis” 

ℰ 

ℰ 

Improvement to 
Computer 

Improvement to 
Computer 

Cooling 

Magnetic 
Shielding 



Can Improve Error Correcting Codes 
with Better Characterization of Errors  

“Non local, correlated error” 

ℰ 

Improvement to Error 
Correcting Code 

? 



Standard Techniques Have Problems 

Need nearly perfect state preparation, 
measurement and other operations. Otherwise 
systematic errors give inaccurate or even invalid 
results. 
Not “robust” 

ℰ 



Robust Techniques 

• Gate Set Tomography Procedures [Stark ‘13, Blume-
Kohout et al. ’13, Merkel et al. ‘12] 

– Characterizes many processes at once 

• Randomized Benchmarking (RB) [Emerson et al. ‘05, 
Knill et al. ‘08, Magesan et al. ‘11, ‘12] 

– Can only characterize 1 parameter of 1 type of 
process. almost all  any 

Can efficiently test performance of a universal 
gate set. 



Outline 

• Background:  
– Issues with standard process characterization  
– Randomized benchmarking framework, challenges 

of current implementation 

• Our Results:  
– Robust characterization of unital part of any 

process 
– Efficient bound on average fidelity of universal 

gate set. 



Quantum Process (Map) 

• Completely positive trace preserving (CPTP) 
map = any process that takes valid quantum 
states to valid quantum states. 

• E.g. unitary, depolarizing process, dephasing 
process, amplitude damping process 

• 𝑛𝑛 qubits, 𝑂𝑂(16𝑛𝑛) free parameters 



Problem with Standard Process 
Tomography 
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Problem with Standard Process 
Tomography 
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Repeated Application 
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Repeated Application 

If eigenstate of ℰ, will only see how ℰ acts on this state   
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Randomized Benchmarking 
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Randomizing Unitaries 
Recovery Unitaries 



Randomized Benchmarking 

Decay constant depends on one parameter of ℰ  
 

Sequence Length 

Value of 
Measurement 
Observable 

Simulated Randomized Benchmarking Experiment 



Randomized Benchmarking 
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Randomizing Unitaries 
Have Errors! Recovery Unitaries 



Two Issues with RB 

1. How can we extract more than just 1 
parameter? 

2. How can we deal with errors on the 
randomizing operations? 



Randomizing Operation: Clifford Twirl 

Result is depolarizing channel (very simple process) 
that depends on only one parameter of ℰ:  

Average fidelity of ℰ to the identity 

1
|𝐶𝐶𝑖𝑖|

� 𝐶𝐶𝑖𝑖 † ∘ ℰ ∘ 𝐶𝐶𝑖𝑖
𝐶𝐶𝑖𝑖 in Cliffords

𝜌𝜌 = 1 − 𝑞𝑞 𝜌𝜌 + 𝑞𝑞
𝕀𝕀
𝑑𝑑

 

�𝑑𝑑 |𝜓𝜓⟩  𝜓𝜓 ℰ(|𝜓𝜓⟩⟨𝜓𝜓|) 𝜓𝜓  Average fidelity of ℰ = 



Randomizing Operation: Clifford Twirl 

ℰ 𝐶𝐶𝑖𝑖 † 𝐶𝐶𝑖𝑖 

To implement (approximately), repeat many times, 
each time randomly choosing 𝐶𝐶𝑖𝑖, and average results 

Everything inside the Clifford 
twirl gets simplified to a 
depolarizing channel 



Randomizing Operation: Clifford Twirl 

ℰ 𝐶𝐶𝑖𝑖 † ∘ 𝐶𝐶𝑗𝑗  𝐶𝐶𝑖𝑖 𝐶𝐶𝑗𝑗 
† ℰ 

Randomizing Operations 

|0⟩ ℰ Λ0 ℰ |0⟩, |1⟩ Λ0/1 

Recovery Unitaries 



Randomizing Operations 

Decay constant depends on 1 parameter of ℰ: 
Average fidelity of ℰ to the identity. 
 

Sequence Length 

Value of 
Measurement 
Observable 

Simulated Randomized Benchmarking Experiment 



1. Extracting More Information 

ℰ 𝐶𝐶𝑖𝑖 † ∘ 𝐶𝐶𝑗𝑗 𝐶𝐶𝑖𝑖 𝐶𝐶𝑗𝑗 
†  ℰ 

Twirl simplifies too much! 
• no twirl 
• stick additional information inside twirl 



1. Extracting More Information 

ℰ 𝐶𝐶𝑥𝑥 ∘ 𝐶𝐶𝑖𝑖 †∘ 𝐶𝐶𝑗𝑗 𝐶𝐶𝑖𝑖 𝐶𝐶𝑥𝑥 ∘ 𝐶𝐶𝑗𝑗 
† ℰ 

𝐶𝐶𝑥𝑥 is fixed – not random. The 
same 𝐶𝐶𝑥𝑥 is applied in each 
twirl. 



1. Extracting More Information 

Decay constant depends on 1 parameter of ℰ: 
Average Fidelity of 𝓔𝓔 to 𝑪𝑪𝒙𝒙†   (can have fast decays) 

Sequence Length 

Value of 
Measurement 
Observable 

Simulated Randomized Benchmarking Experiment 



1. Extracting More Information 
CPTP map: 16𝑛𝑛 − 4𝑛𝑛 parameters for 𝑛𝑛-qubit map 

• Vectors  𝑉𝑉 span a subspace 𝑆𝑆 
• Learn inner product between 

𝑉𝑉 and unknown vector 𝑢𝑢 
• Can learn projection of 𝑢𝑢 

onto 𝑆𝑆 

4𝑛𝑛 

4𝑛𝑛 
1 0 … 0

 

• Cliffords span unital part 
• Learn inner product between 

Cliffords and ℰ  
• Learn projection of ℰ onto 

unital subspace 

To compose two 
maps, just multiply 
matrices! 



2. Dealing with Errors 

ℰ 𝐶𝐶𝑥𝑥 ∘ 𝐶𝐶𝑖𝑖 †∘ 𝐶𝐶𝑗𝑗 𝐶𝐶𝑖𝑖 𝐶𝐶𝑥𝑥 ∘ 𝐶𝐶𝑗𝑗 
† ∘  ℰ Λ𝐶𝐶  Λ𝐶𝐶  



2. Dealing with Errors 

𝐶𝐶𝑥𝑥 ∘ 𝐶𝐶𝑖𝑖 †∘ 𝐶𝐶𝑗𝑗 𝐶𝐶𝑖𝑖 𝐶𝐶𝑥𝑥 ∘ 𝐶𝐶𝑗𝑗 
† ∘  Λ𝐶𝐶  Λ𝐶𝐶  



2. Dealing with Errors 

almost complete characterization of  Λ𝐶𝐶  

almost complete characterization of Λ𝐶𝐶 ∘ ℰ 

almost complete characterization of ℰ 

All without the systematic errors of previous procedures! 

+ 

= 

1 0 … 0

 

1 0 … 0

 

1 0 … 0

 



Experimental Implementation 



Negative Witness Test [Moroder et al. ‘13] 

• To be a valid quantum process, must be trace 
preserving and completely positive 

• Complete positivity = in Choi representation, 
all eigenvalues must be positive 
 

• Negative witness test: 
– Look at value of smallest eigenvalues of 

reconstructed map in Choi representation. 
– If negative, BAD! 



QPT QPT RBT (No error 
correction) 

RBT 

Negative Witness Test for Hadamard 



Efficient Fidelity Estimate 

1 0 … 0

 
Requires an exponential number 
of measurement settings with 
different 𝐶𝐶𝑥𝑥 

Instead, only want to check that your operations 
are good enough. 

Want to check implementation of  Clifford Gates and T gates  
= universal gate set 



Efficient Fidelity Estimate 

ℰ 𝐶𝐶𝑥𝑥 Λ𝐶𝐶  

Average fidelity to any unitary 
𝒰𝒰 of  
• O(log 𝑛𝑛) T gates 
• O(poly 𝑛𝑛) Cliffords 
only need to repeat for 
O(poly 𝑛𝑛) different 𝐶𝐶𝑥𝑥. 

𝐼𝐼 Λ𝐶𝐶  
If Λ𝐶𝐶  is close to Identity, can 
closely bound the average 
fidelity of ℰ to 𝒰𝒰. 
 

Can test a universal gate set! 
 



Conclusions and Open Questions 
• Can robustly measure unital part of any quantum 

process 
• Can efficiently and robustly test fidelity of 

universal quantum gate set operations. 
• Experimentally implemented with 

superconducting qubit system at BBN 
 

• What about the non-unital part? 
• Can we extract other information efficiently and 

robustly (compressed sensing?) 
• How does RB compare to Gate Set Tomography 

methods? 



Efficient Fidelity Estimate 

Average Fidelity (ℰ , 𝑈𝑈) ∼ tr ⋯
⋮ ⋱ ⋮

⋯

⋯
⋮ ⋱ ⋮

⋯
 

 

ℰ 𝑈𝑈 

�𝑎𝑎𝑥𝑥
⋯

⋮ ⋱ ⋮
⋯𝑥𝑥

 𝐶𝐶𝑥𝑥 

Unitaries composed of Cliffords and O(log 𝑛𝑛) T gates can be 
written as a linear combination of O(poly 𝑛𝑛) Cliffords.  
Only need to measure O(poly 𝑛𝑛)  traces, each of which can be 
done efficiently. 



Efficient Fidelity Estimate 

Average Fidelity (ℰ , 𝑈𝑈) ∼ tr ⋯
⋮ ⋱ ⋮

⋯

⋯
⋮ ⋱ ⋮

⋯
 

 

Λ𝐶𝐶 ∘ ℰ 𝑈𝑈 

�𝑎𝑎𝑥𝑥
⋯

⋮ ⋱ ⋮
⋯𝑥𝑥

 𝐶𝐶𝑥𝑥 

Since we haven’t characterized Λ𝐶𝐶, we can’t get rid of its effect. 
However, we can measure its average fidelity to the identity, and 
if it is close to the identity, we can bound its effect 



Efficient Fidelity Estimate 

ℰ 𝐶𝐶𝑥𝑥 Λ𝐶𝐶  

To get average fidelity to any 
unitary 𝒰𝒰 of O(log 𝑛𝑛) T gates 
and O(poly 𝑛𝑛) Cliffords,  only 
need to repeat for O(poly 𝑛𝑛) 
overlaps 𝐶𝐶𝑥𝑥. 

𝐼𝐼 Λ𝐶𝐶  
If Λ𝐶𝐶  is close to Identity, can 
closely bound the average 
fidelity of ℰ to 𝒰𝒰. 
 

Can test a universal gate set! 
 



What do we measure? 

ℰ 𝐶𝐶𝑥𝑥 Λ𝐶𝐶  

⋯
⋮ ⋱ ⋮

⋯
 

⋯
⋮ ⋱ ⋮

⋯
 Λ𝐶𝐶 ∘ ℰ 𝐶𝐶𝑥𝑥 

tr ⋯
⋮ ⋱ ⋮

⋯

⋯
⋮ ⋱ ⋮

⋯
 

 

Λ𝐶𝐶 ∘ ℰ 𝐶𝐶𝑥𝑥 

We measure 



What can we measure? 
CPTP map: 16𝑛𝑛 − 4𝑛𝑛 parameters for 𝑛𝑛 qubit map 

We learn: 16𝑛𝑛 − 2 ∗ 4𝑛𝑛 + 1 parameters 

Choose many different 
𝐶𝐶𝑥𝑥′𝑠𝑠 and measure trace. 
By measuring enough 
traces can learn unital 
part 

4𝑛𝑛 

4𝑛𝑛 
1 0 … 0

 



What do we characterize? 

ℰ 𝐶𝐶𝑥𝑥 

4𝑛𝑛 

4𝑛𝑛 
1 0 … 0

 
Unital part.  

(Pauli-Liouville Representation) 

Need to repeat 
for  16𝑛𝑛 
different 𝐶𝐶𝑥𝑥 



2. Dealing with Errors 

ℰ 𝐶𝐶𝑥𝑥 ∘ 𝐶𝐶𝑖𝑖 †∘ 𝐶𝐶𝑗𝑗 𝐶𝐶𝑖𝑖 𝐶𝐶𝑥𝑥 ∘ 𝐶𝐶𝑗𝑗 
† ∘  ℰ Λ𝐶𝐶  Λ𝐶𝐶  

Randomizing Operation 
= Twirl 



Can we do better with Randomized 
Benchmarking? 
• Can we robustly characterize many 

parameters of any operation? 
 

 
 

• What information can we obtain robustly and 
efficiently? 

Can characterize almost all parameters of any 
quantum map 

Can test performance of a universal gate set. 

• We show Cliffords span unital part of 
quantum maps. By learning average 
fidelity of ℰ to many 𝐶𝐶𝑥𝑥′𝑠𝑠 , can learn 
projection of ℰ into unital subspace. 
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