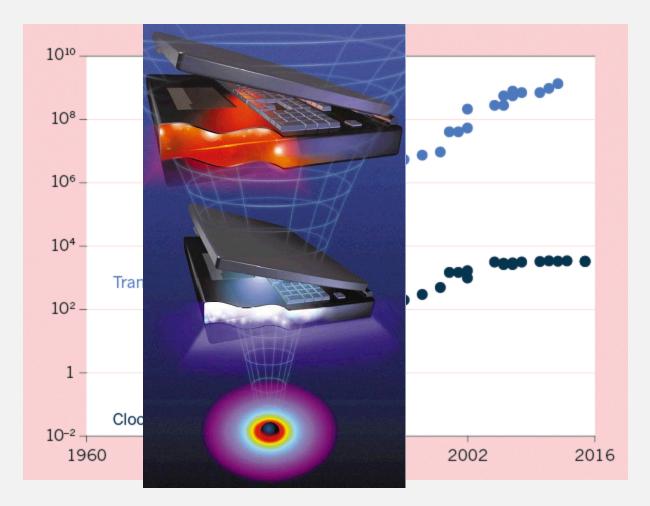
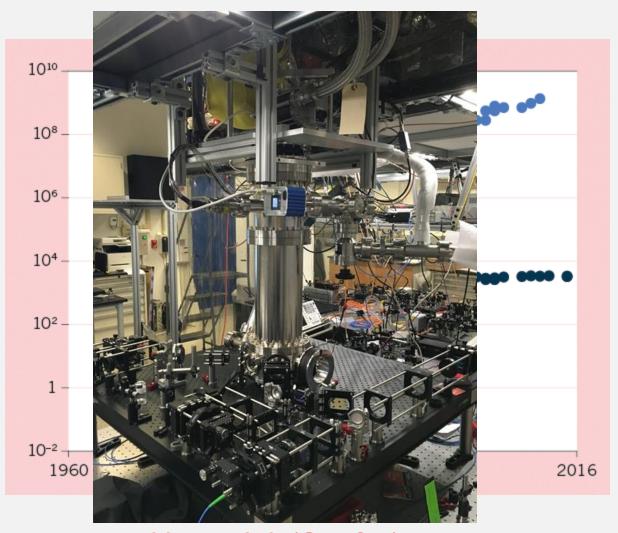

Quantum Algorithms

Shelby Kimmel



How Good Can Computers Get?


Waldrop, Nature, 2016

How Good Can Computers Get?

Lloyd, Nature, 2016

How Good Can Computers Get?

Monroe Lab (CryoSim)

Quantum Algorithm

Quantum Algorithm

Quantum Algorithm = instructions

Outline

- 1. What problems have fast quantum algorithms?
- 2. Metaphorical interlude: why do quantum computers have an advantage?
- 3. When is there a provable quantum advantage?

Fast and Exciting Quantum Algorithms

Factoring

Quantum Chemistry

 $= p \times q$

=

X

Factoring

• Best classical algorithm: exponential in cube root of number of digits d:

 $\sim e^{\sqrt[3]{d}}$

Rubinstein 2013

• Best quantum algorithm: cubic in number of digits:

 $\sim d^3$ Shor 1997

Factoring

Why do we care?

- Security of modern electronic commerce relies on public-key cryptosystems (e.g. sharing credit care info over internet).
- Public-key cryptosystems are only safe if factoring (and similar problems) are difficult.
- > If we build a quantum computer, we can break current cryptosystems.

Fast and Exciting Quantum Algorithms

Factoring

Quantum Chemistry

Quantum Chemistry

Current classical computers can only simulate molecules with less than ~ 70 electronic states.

• Number of bits scales exponentially in number of states

Quantum computers only require ~ 1 qubit per electronic state

• Can simulate on small quantum computers (in principle)

Poulin et al 2014, Wecker et al 2014

Quantum Chemistry

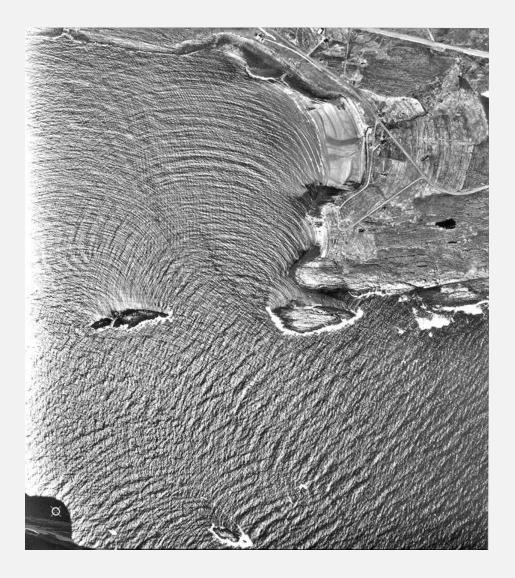
Exist quantum algorithms for

- Thermal Rate Constant = rate of chemical reaction
- Energy structure of molecules
- Simulating solid state systems (superconductors, spin glasses, metamaterials)

Quantum Chemistry

Exist quantum algorithms for

- Thermal Rate Constant = rate of chemical reaction
- Energy structure of molecules
- Simulating solid state systems (superconductors, spin glasses, metamaterials)


Applications

- New drug development
- New devices/technology (batteries, solar cells, better classical computers)
- Carbon capture

Outline

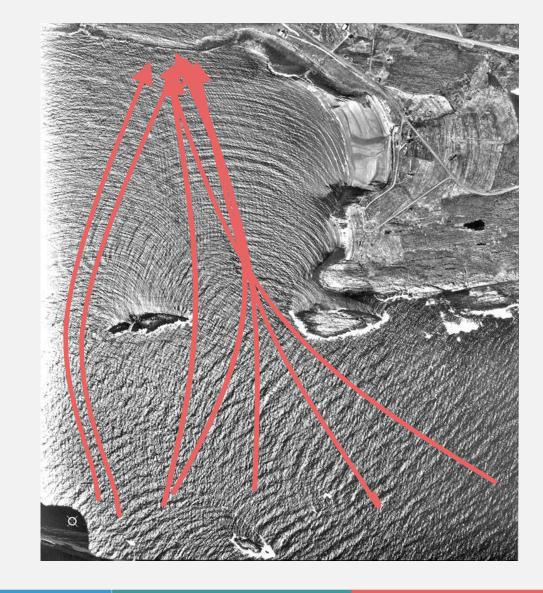
- 1. What problems have fast quantum algorithms?
- 2. Metaphorical interlude: why do quantum computers have an advantage?
- 3. When is there a provable quantum advantage?

Metaphor for quantum computer

Metaphor for quantum computer

 Writing algorithm is like engineering wave size and location on a beach

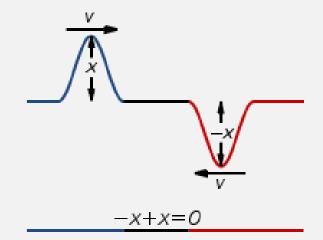
Metaphor for quantum algorithms


What makes quantum computers powerful?

• Superposition – "can be in all states at once"

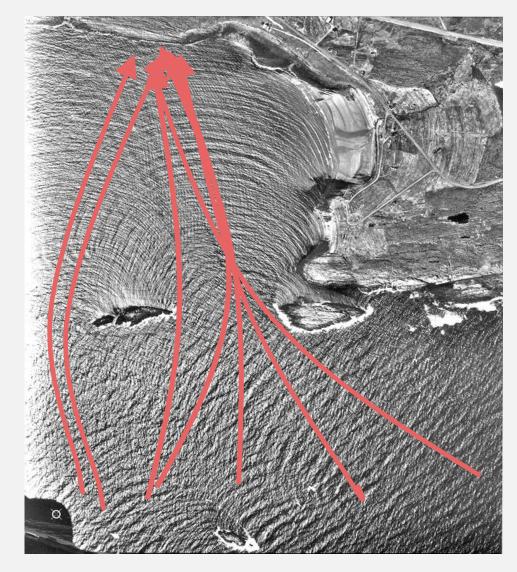
Quantum Advantage

• Superposition


What makes quantum computers powerful?

- Superposition "can be in all states at once"
- Interference

Quantum Advantage


• Interference

Quantum Advantage

Superposition
+ interference

Outline

- 1. What problems have fast quantum algorithms?
- 2. Metaphorical interlude: why do quantum computers have an advantage?
- 3. When is there a provable quantum advantage?

Proving Quantum Advantage is Difficult!

• Best classical algorithm: exponential in cube root of number of digits d:

 $\sim e^{\sqrt[3]{d}}$

There could be a better algorithm!

• Best quantum algorithm: cubic in number of digits:

 $\sim d^3$

• Explicit description:

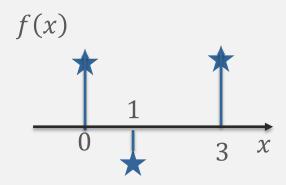
$$f(x) = 2x^2 - 3$$

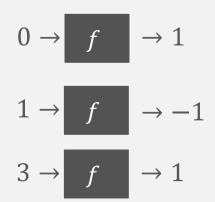
• Explicit description:

$$f(x) = 2x^2 - 3$$

Black Box description

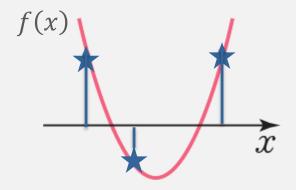
$$x \to f \to f(x)$$

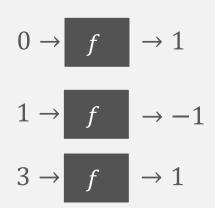

$$0 \rightarrow f \rightarrow -3$$
$$1 \rightarrow f \rightarrow -1$$
$$2 \rightarrow f \rightarrow 5$$


- Problem: Given a black box function f, does the function have property P?
- Cost: "Query Complexity" = Number of times you need to use the box (Don't count other operations)

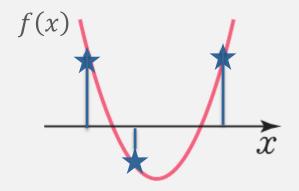
• Ex: Given black box access to *f*, and promised *f* is quadratic or linear, determine which.

$$f(x) = ax^2 + bx + c \qquad \qquad f(x) = ax + b$$


• Ex: Given black box access to *f*, and promised *f* is quadratic or linear, determine which.



• Ex: Given black box access to *f*, and promised *f* is quadratic or linear, determine which.


Query Complexity = 3

• Ex: Given black box access to *f*, and promised *f* is quadratic or linear, determine which.

Query Complexity = 3

Only queries are counted!

Quantum Black Box

Input is quantum state that encodes input value

$$|x\rangle \rightarrow f \rightarrow |f(x)\rangle$$

Output is quantum state that encodes output value

Black box is a unitary operation that encodes f

Quantum Black Box

- Problem: Given a quantum black box of f, does the function have property P?
- Cost: "Quantum Query Complexity" = Number of times you need to use the box

(Free use of quantum computer, unlimited time, size)

Example: Weather Predictions

Washington Post

Boolean functions: $x = \{1, 2, 3, ..., n\}, f(x) = \{0, 1\}$

x	f(x)
1	0
2	1
3	0
4	1
5	1
6	0

Boolean functions: $x = \{1, 2, 3, ..., n\}, f(x) = \{0, 1\}$

Property of <i>f</i>	x	f(x)
	1	0
Even Parity	2	1
Are there an even $\#$	3	0
of 1-valued outputs?	4	1
	5	1

6

0

Boolean functions: $x = \{1, 2, 3, ..., n\}, f(x) = \{0, 1\}$

Problem	Quantum Query Complexity	Classical Query Complexity	
Even Parity Are there an even # of 1-valued outputs?	$\frac{n}{2}$	n	Beals et al 1998

Boolean functions: $x = \{1, 2, 3, ..., n\}, f(x) = \{0, 1\}$

Property of <i>f</i>	x	f(x)
	1	0
All Zeros	2	1
Are all outputs 0-	3	0
valued? (Search)	4	1
	5	1

6

0

Boolean functions: $x = \{1, 2, 3, ..., n\}, f(x) = \{0, 1\}$

Problem	Quantum Query Complexity	Classical Query Complexity	
All Zeros Are all outputs 0- valued? (Search)	$\sim \sqrt{n}$	~n	Grover 1997

More general functions with promises

Property

Period finding Promised f is periodic, find the period

x	f(x)
1	0
2	4
3	3
4	0
5	4
6	3

More general functions with promises

Problem	Quantum Query Complexity	Classical Query Complexity	
Period finding Promised f is periodic, find the period	1	$\sim \sqrt[4]{n}$	Chakraborty et al 2010

f(x)

3

6

5

2

More general functions with promises

Property	x
	1
	2
	3
Hidden shift Promised $f(x) =$	4
g(x+s) for known	5
function g. Find s.	6

x	g(x)
1	1
2	6
3	5
4	2
5	3
6	I.

More general functions with promises

Problem	Quantum Query Complexity	Classical Query Complexity	
Hidden shift Promised $f(x) =$ g(x + s) for known function g. Find s.	$\sim \log n$	$\sim \sqrt{n}$	Gavinsky et al 2011

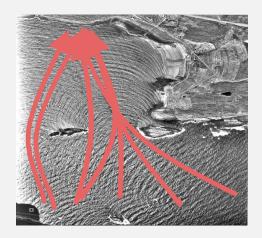
Small Quantum Speed- up	Large Quantum Speed- up
No promise on function	Promise on function (e.g. periodic, shifted function)

x	f(x)
1	0
2	1
3	0
4	1
5	1

Small Quantum Speed- up	Large Quantum Speed- up
No promise on function	Promise on function (e.g. periodic, shifted function)

x	f(x)
1	0
2	4
3	3
4	0
5	4

Small Quantum Speed-	Large Quantum Speed-
up	up
No promise on function	Promise on function (e.g. periodic, shifted function)
Outcome depends on local	Outcome depends on
property (changing one	global property.
output changes the	(if change one output, still
property)	close to desired property)


x	f(x)
1	0
2	0
3	0
4	0
5	0

Small Quantum Speed-	Large Quantum Speed-
up	up
No promise on function	Promise on function (e.g. periodic, shifted function)
Outcome depends on local	Outcome depends on
property (changing one	global property.
output changes the	(if change one output, still
property)	close to desired property)

x	f(x)
1	0
2	0
3	0
4	0
5	0

x	f(x)
1	0
2	4
3	3
4	0
5	4

Small Quantum Speed-	Large Quantum Speed-
up	up
No promise on function	Promise on function (e.g. periodic, shifted function)
Outcome depends on local	Outcome depends on
property (changing one	global property.
output changes the	(if change one output, still
property)	close to desired property)

More on quantum algorithms

• http://www.scottaaronson.com/blog/?p=208 Shtetl-Optimized "Shor I'll Do It"

