Path Detection:
A Quantum Algorithmic Primitive

Shelby Kimmel

Middlebury College

Based on work with

Stacey Jeffery: arXiv: 1704.00765 (Quantum vol | p 26)

Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, arXiv:1804.10591 (ESA 2018)
Kai DelLorenzo, Teal Witter, arXiv:1904.05995 (TQC 2019)

Primitives!

* Quantum algorithmic primitives
|. Widely applicable
2. Can be used in a black box manner (with easily
analyzable behavior)

Primitives!

* Quantum algorithmic primitives
|. Widely applicable
2. Can be used in a black box manner (with easily
analyzable behavior)

— Ex: Searching unordered list of n items
— Classically, takes 1(n) time
— Quantumly, takes O (1/n) time

Primitives!

* Quantum algorithmic primitives
|. Widely applicable
2. Can be used in a black box manner (with easily
analyzable behavior)

— Ex: Searching unordered list of n items
— Classically, takes 1(n) time
— Quantumly, takes O (1/n) time

Good primitive: st-connectivity

Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive
|. Widely applicable
2. Easy to analyze

Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive
|. Widely applicable
2. Easy to analyze

Applications:
* Read-once Boolean formulas (query optimal) [JK]
* Total connectivity (query optimal) [JJKP]
* Cycle detection (query optimal) [DKWV]
* Even length cycle detection [DKW]
* Bipartiteness (query optimal) [DKWV]
* Directed st-connectivity (query optimal) (Beigi et al ‘19)
* Directed smallest cycle (query optimal) (Beigi et al ‘19)

Outline:

Applications:
* Topological sort (Beigi et al ‘|9)
* Connected components (Beigi et al °19)
e Strongly connected components (Beigi et al ‘19)
* k-cycle at vertex v (Beigi et al ‘19)
* st-connectivity (Reichardt, Belovs ‘12)

st=connectivity

st — connectivity:
is there a path from s to t!

st=connectivity

st — connectivity:
is there a path from s to t!

Input to Algorithm

Bit String:

Input to Algorithm

Bit String:

X2
1o

[~ []
=

Input to Algorithm

Skeleton 1,,0;3 , Bit String:
Graph .7 375
PN
31 11 /
\ L #
II 2
§\ III
N\
©

Input to Algorithm

Skeleton ., @5 Bit String:
Graph 2

_,I
3\

Input to Algorithm

Skeleton 1,,0;3 , Bit String:

Graph .7 3%
— X3
—
31

Input to Algorithm

Bit String:

* Bit string initially hidden, can query
value of string at each bit.

Input to Algorithm

O, D)D) = [D)|b + x;)
Bit String:

* Bit string initially hidden, can query
value of string at each bit.

Algorithm

Graph ,,c':.-?:%‘,
_/ H
3(\ I=1 /
: . Q.Algorithm to
5?\\ /I Solve
‘t connectivity

O, for Bit String:

Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive
|. Widely applicable
2. Easy to analyze

Cycle Detection

Is there a cycle!?

Cycle Detection

Is there a cycle!?

Cycle Detection

Is there a cycle!?

1
k_\""? Input to Cycle Detection:
2 \5\ 3 * Skeleton graph
..-.4.-.‘;' * Hidden bit string

X1X2X3X4X5

x; = 1 ©edge i is present

Cycle Detection

Is there a cycle through edge 1?

Cycle Detection

Is there a cycle through edge 1?

*--1--¢
2, R 13
*-----9
4

There is a cycle through

Edge 1 iff

* Edge 1 is present

* Path between the
endpoints of Edge 1
not using Edge 1

Cycle Detection

Is there a cycle through edge 1?

S
S 5
, \\5\ - Edge 1 is present
-8 :
4
There is a cycle through | Path between
Edge 1 iff the endpoints
* Edge 1 is present 3 of Edge 1 not

* Path between the < using Edge 1
endpoints of Edge 1

not using Edge 1
I e 009000

Cycle Detection

Is there a cycle!?

o--1-o
2, R 13
*-----9
4

There is a cycle if
there is a cycle
through some edge

Cycle Detection

Is there a cycle!? P o

There is a cycle if
there is a cycle

\
through some edge \“;/

Boolean Formulas

Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive
|. Widely applicable
2. Easy to analyze

Algorithm Analysis:

Space Complexity: O (log(# edges in skeleton graph))

Algorithm Analysis:

Query Complexity:

* Bit string initially unknown
¢ Minimum # of oracle uses to
determine w.h.p. on worst input

Algorithm Analysis:

Query Complexity:

* Bit string initially unknown
¢ Minimum # of oracle uses to
determine w.h.p. on worst input

2
Time Complexity

Algorithm Analysis:

Query Complexity:
g (conggzclg(ed G Rs,t (G) not corgsg(cted GCS’t (G)>

1

Effective resistance Effective capacitance

Algorithm Analysis:

Query Complexity:
g (cong;?g(ed G Rs,t (G) not corggg(cted GCS’t (G)>

1

Effective resistance Effective capacitance

[Belovs, [Jarret, Jeffery, Kimmel,
Reichardt,’12] Piedrafita,’ | 8]

Effective Resistance

Effective Resistance

Valid flow:

e Junitinats

*] unitoutatt f

* At all other nodes, zero
net flow

Effective Resistance

Flow energy:

z (flow on edge)?

edges f

Effective Resistance

Flow energy:

2 (flow on edge)?

edges

Effective Resistance: R (G)
* Smallest energy of any valid
flow from s to t on G.

Effective Resistance

Flow energy:

2 (flow on edge)?

edges

Effective Resistance: R (G)
* Smallest energy of any valid
flow from s to t on G.

Algorithm Analysis:

Query Complexity:
g (conggzclg(ed G Rs,t (G) not corgsg(cted GCS’t (G)>

1

Effective resistance Effective capacitance

Effective Capacitance

Generalized cut: 1
e 1Tats 1/\
e Qatt s Ainiainininie 'I. 1
* Difference is 0 across edge g K
v /
\\‘\ III
(2
\N 7
06

Effective Capacitance

Potential energy:

1
z (cut dif ference)? 1 .\)

edgesin /
skeleton graph

Effective Capacitance

Potential energy:

s
z (cut dif ference)®* 1 /1 .\. 1

edgesin N,

| /
skeleton graph [)/
|

\

\ /
Effective Capacitance: C; (G) Z/g\‘ /
N /

* Smallest potential energy of .
any valid generalized cut 0é
between s and t on (.

Algorithm Analysis:

Query Complexity:
g (conggzclg(ed G Rs,t (G) not corgsg(cted GCS’t (G)>

1

Effective resistance Effective capacitance

Example

max
connected G

Cycle Detection O (

B
,/”\‘\\\‘x
1 .~ Vo N ASO
ag 2 3 SO s
%o P 2 o
\] 1
27 % 5', g 21b 5/ ,|. 3 7 \‘
.———\ ‘ 9 !, \
1 3 1/ &1 A
S\ 444 4.-”
3 Ny ; 2 ":—”'5
W g

R (G) J

max
not connected G

)

Example

Cycle Detection 0(max Rs,t((})\/ max Cs,t(6)>

connected G not connected G

Example

not connected G

connected G

Cycle Detection 0(max Rs,t((})\/ max Cs,t(6)>

* k parallel paths of length k
Length k cycle) 1 /k flow on each path
 Effective resistance is 1

Example

Cycle Detection 0(max Rs,t((})\/ max Cs,t(6)>

not connected G

connected G

Multiple cycles — Effective resistance is < 1

Example

Cycle Detection 0(max Rs,t((})\/ max Cs,t(6)>

connected G not connected G

Example

not connected G

connected G

Cycle Detection 0(max Rs,t((})\/ max Cs,t(6)>

 0(n?) subgraphs
corresponding to non-
present edges: cut at top

* 0(n) subgraphs
corresponding to present
edges, cut could have
0(n?) edges in cut

Example

Cycle Detection max = Rg.(G) max Cs(G)
connected G not connected G

/ /7

Rs¢(G) = 0(1) Cst(G) = O(n?)

Query complexity: 0(n3/2)

(optimal — logarithmic improvement over previous algorithm)

Example

connected G not connected G

7/

R +(G) = (circuit rank)™*

Cycle Detection 0(max Rs,t((})\/ max Cs,t(6)>

Circuit rank = min # of edges to cut to create a cycle free graph

* Quantum algorithm picks out critical topological parameter

* If promised either large circuit rank or no cycle, then cycle
detection algorithm runs faster

* Proved by 2" year undergrads

Estimation Algorithm:

Quantum query algorithm to estimate effective resistance or
effective capacitance of (. (Jeffery, Ito ’|5)

Estimation Algorithm:

Quantum query algorithm to estimate effective resistance or
effective capacitance of (. (Jeffery, Ito ’|5)

Because effective resistance depends directly on circuit rank,
we now have a quantum algorithm to estimate circuit rank.

Umm...Algorithm?

Umm...Algorithm?

Span Program

Vie [N],be {0,1}: Hyy=span{le):e € E;p)
U = span{|v) : v € V(G)}
T=|s)—|t)

Ve = (1,0,) € E(G): Alu,v,) = y/c(u,v,£)(|u) — [0))

Span Program->Unitary U = (reflection about space that
depends on skeleton graph)(reflection about a space that
depends on input)

Do phase estimation on U to precision 0(max R (G) \/ max Cm(@))

connected G not connected G

Open Questions and Current
Directions

* How to choose edge weights? (Beigi et al ‘19)

* Conditions when st-connectivity reduction optimal?

* What is the classical time/query complexity of st-
connectivity in the black box model? Under the promise
of small capacitance/resistance!?

* Better estimation algorithm for st-connectivity effective
resistance/capacitance

* Primitives/Pedagogical Problems!?

Thank you!

Michael
Jarret

Alvaro
Piedrafita

Witter Lorenzo

