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A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive
|. Widely applicable
2. Easy to analyze

Applications:
* Read-once Boolean formulas (query optimal) [JK]
* Total connectivity (query optimal) [JJKP]
*  Cycle detection (query optimal) [DKWV]
* Even length cycle detection [DKW]
* Bipartiteness (query optimal) [DKWV]
* Directed st-connectivity (query optimal) (Beigi et al ‘19)
* Directed smallest cycle (query optimal) (Beigi et al ‘19)



Outline:

Applications:
* Topological sort (Beigi et al ‘|9)
* Connected components (Beigi et al °19)
e Strongly connected components (Beigi et al ‘19)
* k-cycle at vertex v (Beigi et al ‘19)
* st-connectivity (Reichardt, Belovs ‘12)
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Input to Algorithm

O, D)D) = [D)|b + x;)
Bit String:

* Bit string initially hidden, can query
value of string at each bit.
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Cycle Detection

Is there a cycle!?

1
k\_\""? Input to Cycle Detection:
2 \5\ 3 * Skeleton graph
..-.4.-.‘;' * Hidden bit string

X1X2X3X4X5

x; = 1 ©edge i is present
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Is there a cycle through edge 1?
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Is there a cycle through edge 1?
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* Edge 1 is present

* Path between the
endpoints of Edge 1
not using Edge 1



Cycle Detection

Is there a cycle through edge 1?
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There is a cycle through | Path between
Edge 1 iff the endpoints
* Edge 1 is present 3 of Edge 1 not

* Path between the < using Edge 1
endpoints of Edge 1

not using Edge 1
I e 009000



Cycle Detection

Is there a cycle!?
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There is a cycle if
there is a cycle
through some edge




Cycle Detection

Is there a cycle!? P o

There is a cycle if
there is a cycle

\
through some edge \“;/




Boolean Formulas
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Algorithm Analysis:

Space Complexity: O (log(# edges in skeleton graph))
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Time Complexity
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Algorithm Analysis:

Query Complexity:
g ( cong;?g(ed G Rs,t (G) not corggg(cted GCS’t (G)>

1

Effective resistance Effective capacitance

[Belovs, [Jarret, Jeffery, Kimmel,
Reichardt,’12] Piedrafita,’ | 8]
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Effective Resistance

Valid flow:

e Junitinats

* ] unitoutatt f

* At all other nodes, zero
net flow
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Effective Capacitance

Generalized cut: 1
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Effective Capacitance

Potential energy:
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Effective Capacitance

Potential energy:

s
z (cut dif ference)®* 1 /1 .\. 1

edgesin N,
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Effective Capacitance: C; (G ) Z/g\‘ /
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* Smallest potential energy of .
any valid generalized cut 0é
between s and t on (.
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Query Complexity:
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Example
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Example

not connected G

connected G

Cycle Detection 0( max Rs,t((})\/ max Cs,t(6)>

* k parallel paths of length k
Length k cycle ) 1 /k flow on each path
 Effective resistance is 1
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Cycle Detection 0( max Rs,t((})\/ max Cs,t(6)>

not connected G

connected G

Multiple cycles — Effective resistance is < 1
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Example

not connected G

connected G

Cycle Detection 0( max Rs,t((})\/ max Cs,t(6)>

 0(n?) subgraphs
corresponding to non-
present edges: cut at top

* 0(n) subgraphs
corresponding to present
edges, cut could have
0(n?) edges in cut




Example

Cycle Detection max = Rg.(G) max Cs(G)
connected G not connected G

/ /7

Rs¢(G) = 0(1) Cst(G) = O(n?)

Query complexity: 0(n3/2)

(optimal — logarithmic improvement over previous algorithm)




Example

connected G not connected G

7/

R +(G) = (circuit rank)™*

Cycle Detection 0( max Rs,t((})\/ max Cs,t(6)>

Circuit rank = min # of edges to cut to create a cycle free graph

* Quantum algorithm picks out critical topological parameter

* If promised either large circuit rank or no cycle, then cycle
detection algorithm runs faster

* Proved by 2" year undergrads



Estimation Algorithm:

Quantum query algorithm to estimate effective resistance or
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Estimation Algorithm:

Quantum query algorithm to estimate effective resistance or
effective capacitance of (. (Jeffery, Ito ’|5)

Because effective resistance depends directly on circuit rank,
we now have a quantum algorithm to estimate circuit rank.
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Umm...Algorithm?

Span Program

Vie [N],be {0,1}: Hyy=span{le):e € E;p)
U = span{|v) : v € V(G)}
T=|s)—|t)

Ve = (1,0,) € E(G): Alu,v,) = y/c(u,v,£)(|u) — [0))

Span Program->Unitary U = (reflection about space that
depends on skeleton graph)(reflection about a space that
depends on input)

Do phase estimation on U to precision 0( max R (G) \/ max Cm(@))

connected G not connected G



Open Questions and Current
Directions

* How to choose edge weights? (Beigi et al ‘19)

* Conditions when st-connectivity reduction optimal?

* What is the classical time/query complexity of st-
connectivity in the black box model? Under the promise
of small capacitance/resistance!?

* Better estimation algorithm for st-connectivity effective
resistance/capacitance

* Primitives/Pedagogical Problems!?




Thank you!

Michael
Jarret

Alvaro
Piedrafita

Witter Lorenzo



