Path Detection:
A Quantum Computing Primitive

Shelby Kimmel

Middlebury College

Based on work with

Stacey Jeffery: arXiv: 1704.00765 (Quantum vol | p 26)

Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, arXiv:1804.10591 (ESA 2018)
Kai DelLorenzo, Teal Witter, arXiv:1904.05995 (TQC 2019)

How to make quantum algorithms
accessible?

How to make quantum algorithms
accessible?

* Need quantum algorithmic primitives

How to make quantum algorithms
accessible?

* Need quantum algorithmic primitives
|. Widely applicable
2. Easy to understand and analyze (without knowing
quantum mechanics)

How to make quantum algorithms
accessible?

* Need quantum algorithmic primitives
|. Widely applicable
2. Easy to understand and analyze (without knowing
quantum mechanics)

— Ex: Searching unordered list of n items
— Classically, takes 1(n) time
— Quantumly, takes O (y/n) time

How to make quantum algorithms
accessible?

* Need quantum algorithmic primitives
|. Widely applicable
2. Easy to understand and analyze (without knowing
quantum mechanics)

— Ex: Searching unordered list of n items
— Classically, takes 1(n) time
— Quantumly, takes O (y/n) time

* New primitive: st-connectivity

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

|. Widely applicable

2. Easy to analyze (without knowing quantum mechanics)
C. Examples

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

|. Widely applicable

2. Easy to analyze (without knowing quantum mechanics)
C. Examples

Applications:
* Read-once Boolean formulas (query optimal)
* Total connectivity (query optimal)
* Cycle detection (query optimal)
* Bipartiteness (query optimal)

st=connectivity

st — connectivity:
is there a path from s to t!

st=connectivity

st — connectivity:
is there a path from s to t!

Input to Algorithm

Bit String:

Input to Algorithm

Bit String:

X2
1o

[~ []
=

Input to Algorithm

Skeleton 1,,0;3 , Bit String:
Graph .7 375
Pt
24 11 /
\ L o
II 2
§\ III
N\
©

Input to Algorithm

Skeleton ., @5 Bit String:
Graph 2

Input to Algorithm

Skeleton 1,,0;3 , Bit String:

Graph < N
rap ,?/_3\;, X3
24 41/ CACHE

NS

Input to Algorithm

Skeleton ,Q;f Bit String:

Graph .7 3 ‘g\
’I_;’
2{ 11 S 0]o 1
\ ! 2
I,' Catch:
\' * Bit string initially hidden

t * Goal: solve while revealing as few
bits as possible — minimize
Query Complexity

NS

Input to Algorithm

Skeleton Bit String:
Graph
rap
1
Catch:

* Bit string initially hidden

* Goal: solve while revealing as few
bits as possible — minimize
Query Complexity

Input to Algorithm

Skeleton Bit String:
Graph
rap
1
Catch:

* Bit string initially hidden

* Goal: solve while revealing as few
bits as possible — minimize
Query Complexity

Q!
Time Complexity

Input to Algorithm

Skeleton Bit String:
Graph
rap
1
Catch:

* Bit string initially hidden

* Goal: solve while revealing as few
bits as possible — minimize
Query Complexity

Q!
Time Complexity

Input to Algorithm

S
Skeleton ,/.\ 2 Bit String:

Graph ,l S

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive
|. Widely applicable
* Boolean Formulas
* Cycle Detection
2. Easy to analyze (without knowing quantum mechanics)
C. Example

Boolean Formulas

AND: outputs 1 if all input OR: outputs 1 if any input
subformulas have value 1 subformulas have value 1

Boolean Formulas

AND: outputs 1 if all input OR: outputs 1 if any input
subformulas have value 1 subformulas have value 1

S

sandt
connected if
all subgraphs
connected

t s
I e 009000

Boolean Formulas

AND: outputs 1 if all input OR: outputs 1 if any input
subformulas have value 1 subformulas have value 1

S

. sandt
connected if
. any subgraph
P . connected

Boolean Formulas

f .'X,') /'l’....~~~
\

Boolean Formulas

s and t are connected
iff f(x) =1

Boolean Formulas

Boolean Formula Applications

* Logic

* Designing electrical circuits

* Game theory (deciding who will win a game)

* Combinatorics and graph problems

* Linear programming

* Testing potential solution to an NP-complete problem

Cycle Detection

Is there a cycle!?

Cycle Detection

Is there a cycle!?

Cycle Detection

Is there a cycle through edge 1?

Cycle Detection

Is there a cycle through edge 1?

*--1--¢
2, R 13
*-----9
4

There is a cycle through

Edge 1 iff

* Edge 1 is present

* Path between the
endpoints of Edge 1
not using Edge 1

Cycle Detection

Is there a cycle through edge 1?

S
S 5
, \\5\ - Edge 1 is present
-8 :
4
There is a cycle through | Path between
Edge 1 iff the endpoints
* Edge 1 is present 3 of Edge 1 not

* Path between the < using Edge 1
endpoints of Edge 1

not using Edge 1
I e 009000

Cycle Detection

Is there a cycle!?

o--1-o
2, R 13
*-----9
4

There is a cycle if
there is a cycle
through some edge

Cycle Detection

Is there a cycle!? P o

There is a cycle if
there is a cycle

\
through some edge \“;/

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

|. Widely applicable

2. Easy to analyze (without knowing quantum mechanics)
C. Extra example

Algorithm Complexity:

Space Complexity: O (log(# edges in skeleton graph))

Algorithm Complexity:

Query Complexity:
g (conggzclg(ed G Rs,t (G) not corgsg(cted GCS’t (G)>

1

Effective resistance Effective capacitance

Algorithm Complexity:

Query Complexity:
g (cong;?g(ed G Rs,t (G) not corggg(cted GCS’t (G)>

1

Effective resistance Effective capacitance

[Belovs, [Jarret, Jeffery, Kimmel,
Reichardt,’12] Piedrafita,’ | 8]

Effective Resistance

Effective Resistance

Valid flow:

e Junitinats

*] unitoutatt f

* At all other nodes, zero
net flow

Effective Resistance

Flow energy:

z (flow on edge)?

edges f

Effective Resistance

Flow energy:

2 (flow on edge)?

edges

Effective Resistance: R (G)
* Smallest energy of any valid
flow from s to t on G.

Effective Resistance

Flow energy:

2 (flow on edge)?

edges

Effective Resistance: R (G)
* Smallest energy of any valid
flow from s to t on G.

Algorithm Complexity:

Query Complexity:
g (conggzclg(ed G Rs,t (G) not corgsg(cted GCS’t (G)>

1

Effective resistance Effective capacitance

Effective Capacitance

Generalized cut: 1
e 1Tats 1/\
e Qatt s Ainiainininie 'I. 1
* Difference is 0 across edge g K
v /
\\‘\ III
(2
\N 7
06

Effective Capacitance

Potential energy:

1
z (cut dif ference)? 1 .\)

edgesin /
skeleton graph

Effective Capacitance

Potential energy:

s
z (cut dif ference)®* 1 /1 .\. 1

edgesin N,

| /
skeleton graph [)/
|

\

\ /
Effective Capacitance: C; (G) Z/g\‘ /
N /

* Smallest potential energy of .
any valid generalized cut 0é
between s and t on (.

Algorithm Complexity:

Query Complexity:
g (conggzclg(ed G Rs,t (G) not corgsg(cted GCS’t (G)>

1

Effective resistance Effective capacitance

Example

Decide AND (xq, x5, ..., Xp), if
o All Xi = 1,or
At least k input bits are 0.

Example

?
:
|
:
H

Decide AND (xq, x5, ..., Xp), if
o All Xi = 1,0I"
At least k input bits are 0.

Decide if

e s and t are connected, or
* At least k edges are missing

Example

?
:
|
:
H

Decide if
e s and t are connected, or
* At least k edges are missing

of

max
connected G

R (G) J

max
not connected G

)

Example

N-‘

S|

1 unit
of flow

1 unit
of flow

1 unit
of flow

1 unit
of flow

Decide if
e s and t are connected, or

* At least k edges are missing

of

max
connected G

R (G) J

max
not connected G

)

Example

N-‘

S|

1 unit
of flow

1 unit
of flow

1 unit
of flow

1 unit
of flow

Decide if
e s and t are connected, or

* At least k edges are missing

of

max
connected G

max
connected G

not connected G

Rs+(G) J max

Rs,t (G) =N

)

Example

?
:
|
:
H

Decide if
e s and t are connected, or
* At least k edges are missing

of

max
connected G

R (G) J

max
not connected G

)

Example

Decide if

~ & * s and t are connected, or
i * At least k edges are missing

not connected G

1 ——
k 0 (max R .(G) J max Cst(G))
connected G ’ ’

1

ke 2 1
0 max Cst(G) = kX (—) =
0
t

not connected G k

k

,1
|

Example

?
:
|
:
H

Decide if
e s and t are connected, or
* At least k edges are missing

of

connected G

l

N

max = Rg.(G) J

not connected G

l

1/k

max C SI(G))

Example

?
:
|
:
H

Decide if
e s and t are connected, or
* At least k edges are missing

connected G not connected G

l l

N 1/k

0(max Rg.(G) J max Cs,t(a))

Quantum complexity is O(w/N/k) (optimal)

Example

?
:
|
:
H

Decide if
e s and t are connected, or
* At least k edges are missing

connected G not connected G

l l

N 1/k

0(max Rg.(G) J max Cs,t(a))

Quantum complexity is O(w/N/k) (optimal)

Example

N-‘

Decide if
e s and t are connected, or
* At least k edges are missing

connected G not connected G

l l

N 1/k

0(max Rg.(G) J max Cs,t(a))

Quantum complexity is O(w/N/k) (optimal)

Randomized classical complexity is Q(N /k)

Example

max
connected G

Cycle Detection O (

B
,/”\‘\\\‘x
1 .~ Vo N ASO
ag 2 3 SO s
%o P 2 o
\] 1
27 % 5', g 21b 5/ ,|. 3 7 \‘
.———\ ‘ 9 !, \
1 3 1/ &1 A
S\ 444 4.-”
3 Ny ; 2 ":—”'5
W g

R (G) J

max
not connected G

)

Example

Cycle Detection 0(max Rs,t((})\/ max Cs,t(6)>

connected G not connected G

Example

connected G not connected G

Cycle Detection 0(max Rs,t((})\/ max Cs,t(6)>

Example

not connected G

connected G

Cycle Detection 0(max Rs,t((})\/ max Cs,t(6)>

More generally: R; . (G) = (circuit rank)™* < 1

Circuit rank = min # of edges that must be cut to create a cycle

free graph
B

Example

connected G not connected G

7/

R +(G) = (circuit rank)™*

Cycle Detection 0(max Rs,t((})\/ max Cs,t(6)>

Circuit rank = min # of edges that must be cut to create a cycle
free graph

* Quantum algorithm picks out critical topological parameter

* If promised large circuit rank (if cycle exists), then cycle
detection algorithm runs faster

* Proved by 2" year university students

Example

Cycle Detection max = Rg.(G) max Cs(G)
connected G not connected G

/ /7

Rs+(G) = (circuit rank)™* Cs¢(G) = 0(n?)

Query complexity: 0(n3/2)

(optimal — logarithmic improvement over previous algorithm)

Bonus Algorithm:

Quantum query algorithm to estimate effective resistance or
effective capacitance of (. (Jeffery, Ito ’15)

Bonus Algorithm:

Quantum query algorithm to estimate effective resistance or
effective capacitance of (. (Jeffery, Ito ’15)

Because effective resistance depends directly on circuit rank,
we now have a quantum algorithm to estimate circuit rank.

Recap

st-connectivity makes a good algorithmic primitive
|. Widely applicable
2. Easy to analyze (without knowing quantum mechanics)

Open Questions and Current
Directions

* Time complexity (current research at QuSoft)

* How to choose edge weights!?

* When is st-connectivity reduction optimal?

* What is the classical time/query complexity of st-
connectivity in the black box model? Under the promise
of small capacitance/resistance!?

Thank you!

Alvaro
Piedrafita

Witter Lorenzo

