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– Ex: Searching unordered list of 𝑛 items
– Classically, takes Ω(𝑛) time
– Quantumly, takes 𝑂( 𝑛) time
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Applications:
• Read-once Boolean formulas (query optimal)
• Total connectivity (query optimal)
• Cycle detection (query optimal)
• Bipartiteness (query optimal)
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Boolean Formula Applications

• Logic
• Designing electrical circuits
• Game theory (deciding who will win a game)
• Combinatorics and graph problems
• Linear programming
• Testing potential solution to an NP-complete problem



Cycle Detection

Is there a cycle?

Yes



Cycle Detection

Is there a cycle?

No



Cycle Detection

Is there a cycle through edge 1?

1

2 3

4

5



Cycle Detection

There is a cycle through 
Edge 1 iff 
• Edge 1 is present
• Path between the 

endpoints of Edge 1
not using Edge 1

1

2 3

4

5

Is there a cycle through edge 1?



Cycle Detection

There is a cycle through 
Edge 1 iff 
• Edge 1 is present
• Path between the 

endpoints of Edge 1
not using Edge 1

1

2 3

4

5

Is there a cycle through edge 1?

1

2

3

4

5

𝑠

𝑡

Edge 1 is present

Path between 
the endpoints 
of Edge 1 not 
using Edge 1



Cycle Detection

Is there a cycle?

There is a cycle if 
there is a cycle 
through some edge

1

2 3

4

5



Cycle Detection

Is there a cycle?

There is a cycle if 
there is a cycle 
through some edge

1

2 3

4

5

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5

1

1

2

3

4

5
1

2

3

5

4



Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

1. Widely applicable
2. Easy to analyze (without knowing quantum mechanics)

C. Extra example



Algorithm Complexity:

Space Complexity: 𝑂 log(# 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 𝑔𝑟𝑎𝑝ℎ)



Algorithm Complexity:

Query Complexity:

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Effective resistance Effective capacitance



Algorithm Complexity:

Query Complexity:

𝑂 max
de66fdgfh i
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Effective resistance Effective capacitance
[Belovs, 
Reichardt, ’12]

[Jarret, Jeffery, Kimmel, 
Piedrafita, ’18]
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Effective Resistance

Valid flow:
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• 1 unit out at 𝑡
• At all other nodes, zero 

net flow

𝑠

𝑡

1 unit of flow

1 unit of 
flow

1

1

𝑓 1 − 𝑓

0



Effective Resistance

Flow energy:

n
fhofj

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 5

𝑠

𝑡

1 unit of flow

1 unit of 
flow

1

1

𝑓 1 − 𝑓

0



Effective Resistance

Flow energy:

n
fhofj

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 5

Effective Resistance: 𝑅j,g(𝐺)
• Smallest energy of any valid 

flow from 𝑠 to 𝑡 on 𝐺.

𝑠

𝑡

1 unit of flow

1 unit of 
flow

1

1

𝑓 1 − 𝑓

0



Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of 
flow

1

1

1/2 1/2

0Flow energy:

n
fhofj

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 5

Effective Resistance: 𝑅j,g(𝐺)
• Smallest energy of any valid 

flow from 𝑠 to 𝑡 on 𝐺.



Algorithm Complexity:

Query Complexity:

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Effective resistance Effective capacitance



Effective Capacitance

Generalized cut:
• 1 at 𝑠
• 0 at 𝑡
• Difference is 0 across edge
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Effective Capacitance: 𝐶j,g(𝐺)
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More generally: 𝑅j,g 𝐺 = 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑟𝑎𝑛𝑘 ~4 ≤ 1

Circuit rank = min # of edges that must be cut to create a cycle 
free graph
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Cycle Detection 𝑂 max
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𝑅j,g 𝐺 max
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𝐶j,g 𝐺

𝑅j,g 𝐺 = 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑟𝑎𝑛𝑘 ~4

Circuit rank = min # of edges that must be cut to create a cycle 
free graph

• Quantum algorithm picks out critical topological parameter
• If promised large circuit rank (if cycle exists), then cycle 

detection algorithm runs faster
• Proved by 2nd year university students



Example

Cycle Detection 𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

𝐶j,g 𝐺 = 𝑂(𝑛:)𝑅j,g 𝐺 = 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑟𝑎𝑛𝑘 ~4

Query complexity: 𝑂 𝑛:/5

(optimal – logarithmic improvement over previous algorithm)
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Bonus Algorithm:

Quantum query algorithm to estimate effective resistance or 
effective capacitance of 𝐺. (Jeffery, Ito ’15)

Because effective resistance depends directly on circuit rank, 
we now have a quantum algorithm to estimate circuit rank.



Recap

st-connectivity makes a good algorithmic primitive
1. Widely applicable
2. Easy to analyze (without knowing quantum mechanics)



Open Questions and Current 
Directions

• Time complexity (current research at QuSoft)
• How to choose edge weights?
• When is st-connectivity reduction optimal?
• What is the classical time/query complexity of st-

connectivity in the black box model? Under the promise 
of small capacitance/resistance?
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