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Applications:
* Read-once Boolean formulas (query optimal)
* Total connectivity (query optimal)
* Cycle detection (query optimal)
* Bipartiteness (query optimal)
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Boolean Formula Applications

* Logic

* Designing electrical circuits

* Game theory (deciding who will win a game)

* Combinatorics and graph problems

* Linear programming

* Testing potential solution to an NP-complete problem
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[Belovs, [Jarret, Jeffery, Kimmel,
Reichardt,’12] Piedrafita,’ | 8]
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Randomized classical complexity is Q(N /k)
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More generally: R; . (G) = (circuit rank)™* < 1

Circuit rank = min # of edges that must be cut to create a cycle

free graph
B
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Circuit rank = min # of edges that must be cut to create a cycle
free graph

* Quantum algorithm picks out critical topological parameter

* If promised large circuit rank (if cycle exists), then cycle
detection algorithm runs faster

* Proved by 2" year university students
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Rs+(G) = (circuit rank)™* Cs¢(G) = 0(n?)

Query complexity: 0(n3/2)

(optimal — logarithmic improvement over previous algorithm)
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Bonus Algorithm:

Quantum query algorithm to estimate effective resistance or
effective capacitance of (. (Jeffery, Ito ’15)

Because effective resistance depends directly on circuit rank,
we now have a quantum algorithm to estimate circuit rank.




Recap

st-connectivity makes a good algorithmic primitive
|. Widely applicable
2. Easy to analyze (without knowing quantum mechanics)




Open Questions and Current
Directions

* Time complexity (current research at QuSoft)

* How to choose edge weights!?

* When is st-connectivity reduction optimal?

* What is the classical time/query complexity of st-
connectivity in the black box model? Under the promise
of small capacitance/resistance!?




Thank you!

Alvaro
Piedrafita

Witter Lorenzo



