
Path Detection:
A Quantum Computing Primitive

Shelby Kimmel
Middlebury College

Based on work with
Stacey Jeffery: arXiv: 1704.00765 (Quantum vol 1 p 26)
Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, arXiv:1804.10591 (ESA 2018)
Kai DeLorenzo, Teal Witter, arXiv:1904.05995 (TQC 2019)

How to make quantum algorithms
accessible?

How to make quantum algorithms
accessible?
• Need quantum algorithmic primitives

How to make quantum algorithms
accessible?
• Need quantum algorithmic primitives

1. Widely applicable
2. Easy to understand and analyze (without knowing

quantum mechanics)

How to make quantum algorithms
accessible?
• Need quantum algorithmic primitives

1. Widely applicable
2. Easy to understand and analyze (without knowing

quantum mechanics)

– Ex: Searching unordered list of 𝑛 items
– Classically, takes Ω(𝑛) time
– Quantumly, takes 𝑂(𝑛) time

How to make quantum algorithms
accessible?
• Need quantum algorithmic primitives

1. Widely applicable
2. Easy to understand and analyze (without knowing

quantum mechanics)

– Ex: Searching unordered list of 𝑛 items
– Classically, takes Ω(𝑛) time
– Quantumly, takes 𝑂(𝑛) time

• New primitive: 𝒔𝒕-connectivity

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

1. Widely applicable
2. Easy to analyze (without knowing quantum mechanics)

C. Examples

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

1. Widely applicable
2. Easy to analyze (without knowing quantum mechanics)

C. Examples

Applications:
• Read-once Boolean formulas (query optimal)
• Total connectivity (query optimal)
• Cycle detection (query optimal)
• Bipartiteness (query optimal)

𝑠𝑡-connectivity

𝑠

𝑡

𝒔𝒕 − 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚:
is there a path from 𝑠 to 𝑡?

𝑠𝑡-connectivity

𝑠

𝑡

𝒔𝒕 − 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚:
is there a path from 𝑠 to 𝑡?

Input to Algorithm

Bit String:

𝑥4 𝑥5 𝑥6…

Input to Algorithm

Bit String:

𝑥4 𝑥5 𝑥6
101

…

Input to Algorithm

𝑥4 𝑥5 𝑥:

Skeleton
Graph

Bit String:
2

2 1

3

2

1
3

𝑠

𝑡

Input to Algorithm

2

2 1

3

2

1
3

𝑠

𝑡

𝑥4 𝑥5 𝑥:
101

Skeleton
Graph

Bit String:

Input to Algorithm

2

2 1

3

2

1
3

𝑠

𝑡

𝑥4 𝑥5 𝑥:
100

Skeleton
Graph

Bit String:

Input to Algorithm

2

2 1

3

2

1
3

𝑠

𝑡

𝑥4 𝑥5 𝑥:
100

Skeleton
Graph

Bit String:

Catch:
• Bit string initially hidden
• Goal: solve while revealing as few

bits as possible → minimize
Query Complexity

Input to Algorithm

2

2 1

3

2

1
3

𝑠

𝑡

𝑥4 𝑥5 𝑥:
1

Skeleton
Graph

Bit String:

Catch:
• Bit string initially hidden
• Goal: solve while revealing as few

bits as possible → minimize
Query Complexity

Input to Algorithm

2

2 1

3

2

1
3

𝑠

𝑡

𝑥4 𝑥5 𝑥:
1

Skeleton
Graph

Bit String:

Catch:
• Bit string initially hidden
• Goal: solve while revealing as few

bits as possible → minimize
Query Complexity

≈

Time Complexity
?

Input to Algorithm

2

2 1

3

2

1
3

𝑠

𝑡

𝑥4 𝑥5 𝑥:
1

Skeleton
Graph

Bit String:

Catch:
• Bit string initially hidden
• Goal: solve while revealing as few

bits as possible → minimize
Query Complexity

≈

Time Complexity
?

Input to Algorithm

Skeleton
Graph

Bit String:2

2 ?1

?3

2

1
3

𝑠

𝑡

𝑥4 𝑥5 𝑥:
100

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

1. Widely applicable
• Boolean Formulas
• Cycle Detection

2. Easy to analyze (without knowing quantum mechanics)
C. Example

Boolean Formulas

⋀ ⋁ 𝑂𝑅: outputs 1 if any input
subformulas have value 1

𝐴𝑁𝐷: outputs 1 if all input
subformulas have value 1

Boolean Formulas

𝒔

𝒕

𝑠 and 𝑡
connected if
all subgraphs
connected

⋀ ⋁ 𝑂𝑅: outputs 1 if any input
subformulas have value 1

𝐴𝑁𝐷: outputs 1 if all input
subformulas have value 1

Boolean Formulas

𝒔

𝒕

𝒔

𝒕

𝑠 and 𝑡
connected if
any subgraph
connected

⋀ ⋁ 𝑂𝑅: outputs 1 if any input
subformulas have value 1

𝐴𝑁𝐷: outputs 1 if all input
subformulas have value 1

Boolean Formulas

𝑥4F

𝑥4

𝑥5

𝑥G

𝑥H

𝑥I

𝑥J
𝑥K

𝑥L

𝒔

𝒕

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥4F

𝑥4 𝑥5 𝑥: 𝑥G
𝑥H 𝑥I 𝑥J 𝑥K 𝑥L

𝑓(𝑥)
𝑥:

Boolean Formulas

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥4F

𝑥4 𝑥5 𝑥: 𝑥G
𝑥H 𝑥I 𝑥J 𝑥K 𝑥L

𝑓(𝑥)

1

0 0 1 0

0 1 0 1 1

𝑠 and 𝑡 are connected
iff 𝑓 𝑥 = 1!

𝒔

𝒕
𝑥4F

𝑥4

𝑥5

𝑥:

𝑥G

𝑥H

𝑥I

𝑥J
𝑥K

𝑥L

Boolean Formulas

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥4F

𝑥4 𝑥5 𝑥: 𝑥G
𝑥H 𝑥I 𝑥J 𝑥K 𝑥L

𝑓(𝑥)
𝒔

𝒕

𝑥4F

𝑥4

𝑥5

𝑥:

𝑥G

𝑥H

𝑥I

𝑥J
𝑥K

𝑥L

Boolean Formula Applications

• Logic
• Designing electrical circuits
• Game theory (deciding who will win a game)
• Combinatorics and graph problems
• Linear programming
• Testing potential solution to an NP-complete problem

Cycle Detection

Is there a cycle?

Yes

Cycle Detection

Is there a cycle?

No

Cycle Detection

Is there a cycle through edge 1?

1

2 3

4

5

Cycle Detection

There is a cycle through
Edge 1 iff
• Edge 1 is present
• Path between the

endpoints of Edge 1
not using Edge 1

1

2 3

4

5

Is there a cycle through edge 1?

Cycle Detection

There is a cycle through
Edge 1 iff
• Edge 1 is present
• Path between the

endpoints of Edge 1
not using Edge 1

1

2 3

4

5

Is there a cycle through edge 1?

1

2

3

4

5

𝑠

𝑡

Edge 1 is present

Path between
the endpoints
of Edge 1 not
using Edge 1

Cycle Detection

Is there a cycle?

There is a cycle if
there is a cycle
through some edge

1

2 3

4

5

Cycle Detection

Is there a cycle?

There is a cycle if
there is a cycle
through some edge

1

2 3

4

5

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5

1

1

2

3

4

5
1

2

3

5

4

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

1. Widely applicable
2. Easy to analyze (without knowing quantum mechanics)

C. Extra example

Algorithm Complexity:

Space Complexity: 𝑂 log(# 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 𝑔𝑟𝑎𝑝ℎ)

Algorithm Complexity:

Query Complexity:

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Effective resistance Effective capacitance

Algorithm Complexity:

Query Complexity:

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Effective resistance Effective capacitance
[Belovs,
Reichardt, ’12]

[Jarret, Jeffery, Kimmel,
Piedrafita, ’18]

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of
flow

Effective Resistance

Valid flow:
• 1 unit in at 𝑠
• 1 unit out at 𝑡
• At all other nodes, zero

net flow

𝑠

𝑡

1 unit of flow

1 unit of
flow

1

1

𝑓 1 − 𝑓

0

Effective Resistance

Flow energy:

n
fhofj

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 5

𝑠

𝑡

1 unit of flow

1 unit of
flow

1

1

𝑓 1 − 𝑓

0

Effective Resistance

Flow energy:

n
fhofj

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 5

Effective Resistance: 𝑅j,g(𝐺)
• Smallest energy of any valid

flow from 𝑠 to 𝑡 on 𝐺.

𝑠

𝑡

1 unit of flow

1 unit of
flow

1

1

𝑓 1 − 𝑓

0

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of
flow

1

1

1/2 1/2

0Flow energy:

n
fhofj

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 5

Effective Resistance: 𝑅j,g(𝐺)
• Smallest energy of any valid

flow from 𝑠 to 𝑡 on 𝐺.

Algorithm Complexity:

Query Complexity:

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Effective resistance Effective capacitance

Effective Capacitance

Generalized cut:
• 1 at 𝑠
• 0 at 𝑡
• Difference is 0 across edge

𝑠

𝑡

1
1 1

0
𝑣

Effective Capacitance

𝑠

𝑡

1
1 1

0
𝑣

Potential energy:

n
fhofj s6

jtfufge6 ovwxy

𝑐𝑢𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 5

Effective Capacitance

Potential energy:

n
fhofj s6

jtfufge6 ovwxy

𝑐𝑢𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 5

Effective Capacitance: 𝐶j,g(𝐺)
• Smallest potential energy of

any valid generalized cut
between 𝑠 and 𝑡 on 𝐺.

𝑠

𝑡

1
1 1

0
2/3

Algorithm Complexity:

Query Complexity:

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Effective resistance Effective capacitance

Example

Decide 𝐴𝑁𝐷 𝑥4, 𝑥5, … , 𝑥| , if
• All 𝑥s = 1, or
• At least 𝑘 input bits are 0.

Example

𝑠

𝑁

𝑡

Decide if
• 𝑠 and 𝑡 are connected, or
• At least 𝑘 edges are missing

Decide 𝐴𝑁𝐷 𝑥4, 𝑥5, … , 𝑥| , if
• All 𝑥s = 1, or
• At least 𝑘 input bits are 0.

Example

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

𝑁

𝑡

Decide if
• 𝑠 and 𝑡 are connected, or
• At least 𝑘 edges are missing

𝑠

Example

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Decide if
• 𝑠 and 𝑡 are connected, or
• At least 𝑘 edges are missing

1 unit
of flow

1 unit
of flow

1 unit
of flow

1 unit
of flow

𝑡

𝑁

𝑡

𝑠

Example

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Decide if
• 𝑠 and 𝑡 are connected, or
• At least 𝑘 edges are missing

1 unit
of flow

1 unit
of flow

1 unit
of flow

1 unit
of flow

𝑡

𝑁

𝑡

𝑠

max
de66fdgfh i

𝑅j,g 𝐺 = 𝑁

Example

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

𝑁

𝑡

Decide if
• 𝑠 and 𝑡 are connected, or
• At least 𝑘 edges are missing

𝑠

Example

𝑠

𝑁

𝑡

1

0

0

1 −
1
𝑘

1
𝑘

max
6eg de66fdgfh i

𝐶j,g 𝐺 = 𝑘×
1
𝑘

5
=
1
𝑘

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Decide if
• 𝑠 and 𝑡 are connected, or
• At least 𝑘 edges are missing

Example

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Decide if
• 𝑠 and 𝑡 are connected, or
• At least 𝑘 edges are missing

1/𝑘𝑁
𝑁

𝑡

𝑠

Example

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Decide if
• 𝑠 and 𝑡 are connected, or
• At least 𝑘 edges are missing

1/𝑘𝑁

Quantum complexity is 𝑂 𝑁/𝑘 (optimal)

𝑁

𝑡

𝑠

Example

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Decide if
• 𝑠 and 𝑡 are connected, or
• At least 𝑘 edges are missing

1/𝑘𝑁

Quantum complexity is 𝑂 𝑁/𝑘 (optimal)

𝑁

𝑡

𝑠

Example

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Decide if
• 𝑠 and 𝑡 are connected, or
• At least 𝑘 edges are missing

1/𝑘𝑁

Quantum complexity is 𝑂 𝑁/𝑘 (optimal)

𝑁

𝑡

𝑠

Randomized classical complexity is Ω 𝑁/𝑘

Example

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5
1

1
2

3

4

5
1

2

3

5

4

Cycle Detection 𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Example

Cycle Detection

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5
1

1
2

3

4

5
1

2

3

5

4

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

Example

Cycle Detection

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5
1

1
2

3

4

5
1

2

3

5

4

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

𝑅j,g 𝐺 = 1

Example

Cycle Detection

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5
1

1
2

3

4

5
1

2

3

5

4

𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

More generally: 𝑅j,g 𝐺 = 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑟𝑎𝑛𝑘 ~4 ≤ 1

Circuit rank = min # of edges that must be cut to create a cycle
free graph

Example

Cycle Detection 𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

𝑅j,g 𝐺 = 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑟𝑎𝑛𝑘 ~4

Circuit rank = min # of edges that must be cut to create a cycle
free graph

• Quantum algorithm picks out critical topological parameter
• If promised large circuit rank (if cycle exists), then cycle

detection algorithm runs faster
• Proved by 2nd year university students

Example

Cycle Detection 𝑂 max
de66fdgfh i

𝑅j,g 𝐺 max
6eg de66fdgfh i

𝐶j,g 𝐺

𝐶j,g 𝐺 = 𝑂(𝑛:)𝑅j,g 𝐺 = 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑟𝑎𝑛𝑘 ~4

Query complexity: 𝑂 𝑛:/5

(optimal – logarithmic improvement over previous algorithm)

Bonus Algorithm:

Quantum query algorithm to estimate effective resistance or
effective capacitance of 𝐺. (Jeffery, Ito ’15)

Bonus Algorithm:

Quantum query algorithm to estimate effective resistance or
effective capacitance of 𝐺. (Jeffery, Ito ’15)

Because effective resistance depends directly on circuit rank,
we now have a quantum algorithm to estimate circuit rank.

Recap

st-connectivity makes a good algorithmic primitive
1. Widely applicable
2. Easy to analyze (without knowing quantum mechanics)

Open Questions and Current
Directions

• Time complexity (current research at QuSoft)
• How to choose edge weights?
• When is st-connectivity reduction optimal?
• What is the classical time/query complexity of st-

connectivity in the black box model? Under the promise
of small capacitance/resistance?

Thank you!

Andr
ew
Zhao

Lizeth Lucero
Lucero

Teal
Witter

Kai De
Lorenzo

Stacey
Jeffery

Michael
Jarret

Alvaro
Piedrafita

