Phase Retrieval Using Unitary 2-Designs

Shelby Kimmel^{1,2} and Yi-Kai Liu^{1,3}

- 1. Joint Center for Quantum Info and Computer Science (QuICS), University of Maryland
- 2. Middlebury College
- 3. National Institute of Standars and Technology (NIST)

SAMPTA 04/07/2017

Familiar Problem: Phase Retrieval

Phase Retrieval:

Learn unknown signal $x \in \mathbb{C}^d$, given noisy quadratic measurements:

$$y_i = |a_i^* x|^2 + \epsilon_i$$

Where $a_i \in \mathbb{C}^d$ are chosen by observer, ϵ_i are unknown noise, using as few measurement settings as possible.

Variant: Phase Retrieval using Unitaries

Phase Retrieval:

Learn unknown signal $x \in \mathbb{C}^d$, given noisy quadratic measurements:

$$y_i = |a_i^* x|^2 + \epsilon_i$$

Where $a_i \in \mathbb{C}^d$ are chosen by observer, ϵ_i are unknown noise, using as few measurement settings as possible.

Phase Retrieval using Unitaries:

Learn unknown unitary matrix $U \in \mathbb{C}^{d \times d}$, given noisy quadratic measurements: $y_i = |Tr(C_i^*U)|^2 + \epsilon_i$

Where $C_i \in \mathbb{C}^{d \times d}$ are unitary matrices chosen by observer, ϵ_i are unknown noise, using as few measurement settings as possible.

Variant: Phase Retrieval using Unitaries

Phase Retrieval:

Learn unknown signal $x \in \mathbb{C}^d$, given noisy quadratic measurements:

$$y_i = |a_i^* x|^2 + \epsilon_i$$

Where $a_i \in \mathbb{C}^d$ are chosen by observer, ϵ_i are unknown noise, using as few measurement settings as possible.

Phase Retrieval using Unitaries:

Learn unknown unitary matrix $U \in \mathbb{C}^{d \times d}$, given noisy quadratic measurements: $y_i = |Tr(C_i^*U)|^2 + \epsilon_i$

Where $C_i \in \mathbb{C}^{d \times d}$ are unitary matrices chosen by observer, ϵ_i are unknown noise, using as few measurement settings as possible.

N.B.:

- $|Tr(C_i^*U)|^2 = |\operatorname{vec}(C_i)^*\operatorname{vec}(U)|^2$
- C_i^* is conjugate transpose of C_i

Why Phase Retrieval Using Unitaries?

- Unitaries are basic building blocks of a quantum computer
- Physical implementations often not correct need to find errors.

How Phase Retrieval Using Unitaries?

Measurement Schemes to obtain $y_i = |Tr(C_i^*U)|^2 + \epsilon_i$

- Difficult to prepare entangled state and measure in entangled basis
- Can't characterize unitaries acting on full system.

How Phase Retrieval Using Unitaries?

Measurement Schemes to obtain $y_i = |Tr(C_i^*U)|^2 + \epsilon_i$

2. Randomized Benchmarking

- Good: inherently protected from SPAM errors, no entanglement needed
- Bad: C_i must be a Clifford Unitary.

Phase retrieval possible when C_i chosen from Cliffords?

How does our choice of C_i affect our ability to learn U?

How does our choice of C_i affect our ability to learn U?

I. Phase retrieval of all unitary matrices, when C_i chosen from a unitary 4-design

2. Phase retrieval works pretty well when C_i chosen from a unitary 2-design.

How does our choice of C_i affect our ability to learn U?

I. Phase retrieval of all unitary matrices, when C_i chosen from a unitary 4-design

Cliffords form a unitary 3-design! [Zhu; Webb; Kueng and Gross, 2015]

2. Phase retrieval works pretty well when C_i chosen from a unitary 2-design.

How does our choice of C_i affect our ability to learn U?

- I. Phase retrieval of all unitary matrices, when C_i chosen from a unitary 4-design
 - Use PhaseLift algorithm
 - Matrix analog of vector phase retrieval result using vector 4-designs [Kueng, Rauhut, and Terstiege, 2014]
- 2. Phase retrieval works pretty well when C_i chosen from a unitary 2-design.

- I. Phase retrieval of all unitary matrices, when C_i chosen from a unitary 4-design
 - Use PhaseLift algorithm
 - Matrix analog of vector phase retrieval result using vector 4-designs [Kueng, Rauhut, and Terstiege, 2014]
- 2. Phase retrieval works pretty well when C_i chosen from a unitary 2-design.
 - Note: no-go result for PhaseLift using vector 2-designs [Gross et al, 2013]
 - PhaseLift is approximately correct, for most unitaries

- PhaseLift: Lifts vector to matrix, solve convex optimization problem on larger space
- Our case: lifts matrix to larger matrix, solve convex optimization problem on larger space

 $U \to vec(U)vec(U)^* \in \mathbb{C}^{d^2 \times d^2}$

- PhaseLift: Lifts vector to matrix, solve convex optimization problem on larger space
- Our case: lifts matrix to larger matrix, solve convex optimization problem on larger space

 $U \to vec(U)vec(U)^* \in \mathbb{C}^{d^2 \times d^2}$

• Follow strategy similar to [Keung et al. 2014] for state 4-designs.

- PhaseLift: Lifts vector to matrix, solve convex optimization problem on larger space
- Our case: lifts matrix to larger matrix, solve convex optimization problem on larger space

 $U \to vec(U)vec(U)^* \in \mathbb{C}^{d^2 \times d^2}$

- Follow strategy similar to [Keung et al. 2014] for state 4-designs.
- Key component: bounding expectation of 4th power of certain term
 For unitary 4-design, can bound using properties of 4th moment of Haar random unitaries (using Weingarten functions and commutative diagrams)

- PhaseLift: Lifts vector to matrix, solve convex optimization problem on larger space
- Our case: lifts matrix to larger matrix, solve convex optimization problem on larger space

 $U \to vec(U)vec(U)^* \in \mathbb{C}^{d^2 \times d^2}$

- Follow strategy similar to [Keung et al. 2014] for state 4-designs.
- Key component: bounding expectation of 4th power of certain term
 For unitary 4-design, can bound using properties of 4th moment of Haar random unitaries (using Weingarten functions and commutative diagrams)

- PhaseLift: Lifts vector to matrix, solve convex optimization problem on larger space
- Our case: lifts matrix to larger matrix, solve convex optimization problem on larger space

 $U \to vec(U)vec(U)^* \in \mathbb{C}^{d^2 \times d^2}$

- Follow strategy similar to [Keung et al. 2014] for state 4-designs.
- Key component: bounding expectation of 4th power of certain term
 ✓ For unitary 4-design, can bound using properties of 4th moment of Haar random unitaries
 - For unitary 2-design, can bound using properties of 2nd moment of Haar random unitaries, AND non-spikiness condition.

Non-spikiness condition:

Let \tilde{G} be a finite set of unitary matrices in $\mathbb{C}^{d \times d}$. We say that a unitary matrix $U \in \mathbb{C}^{d \times d}$ is *non-spiky* with respect to \tilde{G} (with parameter $\beta \geq 0$) if the following holds:

$$|\operatorname{tr}(C^{\dagger}U)|^2 \le \beta, \quad \forall C \in \tilde{G}.$$
 (I.13)

Fact: Almost all unitary matrices are non-spiky when $\beta \sim \log |\tilde{G}|!$

What about Cliffords?

I. Phase retrieval of all unitary matrices, when C_i chosen from a unitary 4-design

Cliffords form a unitary 3-design! [Zhu; Webb; Kueng and Gross, 2015]

2. Phase retrieval works pretty well when C_i chosen from a unitary 2-design.

What about Cliffords?

Summary and Conclusions

- Phase retrieval of unitary matrices
 - Motivation: quantum gate tomography
 - Used variant of PhaseLift algorithm
- Exact recovery using unitary 4-designs, approximate recovery using unitary 2-designs. See arXiv/1510.08887
- Outlook:
 - What about 3-designs? What about Cliffords in particular?
 - Different algorithm, e.g. Wirtinger Flow?

PhaseLift for Unitary Matrices

- Measurements $y = \mathcal{A}(\operatorname{vec}(U)\operatorname{vec}(U)^{\dagger}) + \varepsilon$ - Where
 - $\mathcal{A}: \mathbb{C}^{d^2 \times d^2}_{\text{Herm}} \to \mathbb{R}^m \qquad \qquad \mathcal{A}(\Gamma) = \left[\text{vec}(\sqrt{d}C_i)^{\dagger} \Gamma \text{vec}(\sqrt{d}C_i) \right]_{i=1}^m$
- Convex program $\arg \min_{\Gamma \in \mathbb{C}^{d^2 \times d^2}_{\text{Herm}}} \operatorname{tr}(\Gamma) \text{ such that}$ $\|\mathcal{A}(\Gamma) - y\|_2 \leq \eta,$ $\Gamma \succeq 0,$ $\operatorname{tr}_1(\Gamma) = (I/d) \operatorname{tr}(\Gamma),$ $\operatorname{tr}_2(\Gamma) = (I/d) \operatorname{tr}(\Gamma).$

PhaseLift Using Unitary 4-Designs

• "Exact" recovery guarantee:

Suppose that the number of measurements satisfies

$$m \ge \left(64(4!)^2 c_0\right)^2 \cdot d^2 \ln d.$$
 (I.11)

Then with probability at least $1 - \exp(-2m(4(4!))^{-4})$ (over the choice of the C_i), we have the following uniform recovery guarantee:

For any unitary matrix $U \in \mathbb{C}^{d \times d}$, it is the case that any solution Γ_{opt} to the convex program (I.7) with noisy measurements (I.6) must satisfy:

$$\|\Gamma_{opt} - vec(U)vec(U)^{\dagger}\|_F \le \frac{128(4!)^2\eta}{\sqrt{m}} \left(1 + \frac{2c_5}{c_0 - 2c_5}\right).$$
 (I.12)

PhaseLift Using Unitary 2-Designs

 We will seek to recover all unitary matrices U that are "<u>non-spiky</u>" with respect to the measurement matrices C_i

Let \tilde{G} be a finite set of unitary matrices in $\mathbb{C}^{d \times d}$. We say that a unitary matrix $U \in \mathbb{C}^{d \times d}$ is *non-spiky* with respect to \tilde{G} (with parameter $\beta \geq 0$) if the following holds:

$$|\operatorname{tr}(C^{\dagger}U)|^2 \le \beta, \quad \forall C \in \tilde{G}.$$
 (I.13)

• Fact: Almost all unitary matrices are nonspiky, with parameter $\beta \sim \log |\tilde{G}|$

PhaseLift Using Unitary 2-Designs

- For all β-non-spiky unitary matrices U, we achieve "approximate" recovery, up to error δ
 - Let $v = \beta/\delta$

Suppose that the number of measurements satisfies

$$m \ge \left(8c_0\nu^2\right)^2 \cdot d^2 \ln d. \tag{I.16}$$

Then with probability at least $1 - \exp(-\frac{1}{128}m\nu^{-4})$ (over the choice of the C_i), we have the following uniform recovery guarantee:

For any unitary matrix $U \in \mathbb{C}^{d \times d}$ that is non-spiky with respect to \tilde{G} (with parameter β , in the sense of (1.13)),

 $\|\Gamma_{opt} - vec(U)vec(U)^{\dagger}\|_{F}$ $\leq \max \left\{ \delta \| \operatorname{vec}(U) \operatorname{vec}(U)^{\dagger} \|_{F}, \ \frac{16\eta \nu^{2}}{\sqrt{m}} \left(1 + \frac{2c_{5}}{c_{0} - 2c_{5}} \right) \right\}.$ (I.17)