Quantum Algorithms for Connectivity: Applications and Analysis

Shelby Kimmel

Middlebury College

Based on work with
Stacey Jeffery: arXiv: 1704.00765 (Quantum vol 1 p 26)
Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, in progress
Finding new quantum algorithms

- Quantum computers are almost here!!
- What are we going to do with them?
Finding new quantum algorithms

- Find an important problem
 - design a heuristic/provable quantum algorithm
- Better understand existing paradigms
 - Learn what structure quantum algorithms can take advantage of
 - Find problems that fit that structure
Outline

• Quantum Query Algorithms and Span Programs
• Structure of quantum speed-up for st-connectivity
• Applications
Quantum Query Algorithms

Quantum Oracle encodes an n-bit string x:

Given an oracle for x, want to evaluate $f(x)$ for $f: \{0,1\}^n \rightarrow \{0,1\}$

Quantum query complexity of f is the number of uses of the oracle needed by a quantum algorithm to evaluate f
Span Programs

\[P = (H, U, \tau, A) \]

- Finite dimensional inner product spaces \(H_1 \oplus \cdots \oplus H_n \), and \(\{ H_{j,b} \subseteq H_j \}_{b \in \{0,1\}, j \in [n]} \) such that \(H_{j,0} + H_{j,1} = H_j \)
- Vector space \(U \)
- Non-zero target vector \(\tau \in U \)
- Linear operator \(A: H \to U \)

Each span program encodes a function \(f: \{0,1\}^n \to \{0,1\} \)

Each function \(f: \{0,1\}^n \to \{0,1\} \) has an infinite number of span program representations
Span Programs

\[P = (H, U, \tau, A) \]

- Finite dimensional inner product spaces \(H_1 \oplus \cdots \oplus H_n \), and \(\{H_{j,b} \subseteq H_j\}_{b \in \{0,1\}, j \in [n]} \) such that \(H_{j,0} + H_{j,1} = H_j \)
- Vector space \(U \)
- Non-zero target vector \(\tau \in U \)
- Linear operator \(A: H \rightarrow U \)

Connection to functions:
\(\forall x \in \{0,1\}^n \), let \(H(x) = H_{1,x_1} \oplus \cdots \oplus H_{n,x_n} \)

\[f(x) = 1 \leftrightarrow \exists |w\rangle \in H(x): A|w\rangle = \tau \]
Span Programs

\[P = (H, U, \tau, A) \]

- Finite dimensional inner product spaces \(H_1 \oplus \cdots \oplus H_n \), and \(\{H_{j,b} \subseteq H_j\}_{b \in \{0,1\}, j \in [n]} \) such that \(H_{j,0} + H_{j,1} = H_j \)
- Vector space \(U \)
- Non-zero target vector \(\tau \in U \)
- Linear operator \(A : H \rightarrow U \)

Given a span program for a function \(f \), there is a procedure for creating a query algorithm for \(f \) based on that span program, where the query complexity of the algorithm depends only on the span program.
Span Programs

\[P = (H, U, \tau, A) \]

- Finite dimensional inner product spaces \(H_1 \oplus \cdots \oplus H_n \), and \(\{H_{j,b} \subseteq H_j\}_{b \in \{0,1\}, j \in [n]} \) such that \(H_{j,0} + H_{j,1} = H_j \)
- Vector space \(U \)
- Non-zero target vector \(\tau \in U \)
- Linear operator \(A : H \rightarrow U \)

There exists a span program that corresponds to a quantum algorithm with optimal query complexity [Reichardt ‘09,’11]
Span Programs

\[P = (H, U, \tau, A) \]

- Finite dimensional inner product spaces \(H_1 \oplus \cdots \oplus H_n \), and \(\{H_{j,b} \subseteq H_j\}_{b \in \{0,1\}, j \in [n]} \) such that \(H_{j,0} + H_{j,1} = H_j \)
- Vector space \(U \)
- Non-zero target vector \(\tau \in U \)
- Linear operator \(A: H \to U \)

Better understanding of the properties of span programs leads to a better understanding of quantum speed-ups!
Outline

• Quantum Query Algorithms and Span Programs
• Structure of quantum speed-up for st-connectivity
• Applications
st-connectivity

st – connectivity: is there a path from s to t?
st-connectivity

Is there a path from s to t in a graph G?

Let \mathcal{H} be the set of graphs G that the black box might contain.

$G = (V, E)$

Edge label

- $e_i = 1$ if i^{th} edge is in E
- $e_i = 0$ if edge is not in E
Span Program for st-connectivity

First described by Karchmer and Wigderson ['93] when introduced span programs
Used by Belovs and Reichardt ['12] to create a quantum algorithm for st-connectivity

• $H_{i,1} = \text{span}\{|u,v\}, |v,u\rangle: \{v,u\} = \text{edge } i$}
• $H_{i,0} = 0$
• $U = \text{span}\{|v\rangle: v \in V\}$
• $A|u,v\rangle = |u\rangle - |v\rangle$
• $\tau = |s\rangle - |t\rangle$

Witness is a path from s to t
Ex: s to u to t: $A(|s,u\rangle + |u,t\rangle) = |s\rangle - |u\rangle + |u\rangle - |t\rangle = |s\rangle - |t\rangle$
Span Program Algorithm for st-connectivity

Nice properties of the span program-based quantum algorithm for st-connectivity

- Uses log-space (candidate for near term devices?) [Belovs & Reichardt ’12]
- Under mild assumptions, query complexity equals time complexity [Belovs & Reichardt ‘12, Jeffery & K ‘17]
- Now: easier than ever to analyze query complexity
Span Program Algorithm Performance:

Query complexity of span program based st-connectivity algorithm =

\[O\left(\sqrt{\max_{G \in \mathcal{H} \text{ connected}} R_{s,t}(G)} \cdot \sqrt{\max_{G \in \mathcal{H} \text{ not connected}} C_{s,t}(G)}\right) \]

[Belovs, Reichard, ’12] [JKP, in progress]
Effective Resistance

1 unit of flow

1 unit of flow
Effective Resistance

Valid flow:
• 1 unit in at s
• 1 unit out at t
• At all other nodes, zero net flow

$1 - f$ unit of flow

1 unit of flow

1 unit of flow

1 unit of flow

0 unit of flow

1 unit of flow
Effective Resistance

Flow energy:
\[
\sum_{edges} \left(\text{flow on edge} \right)^2
\]
Effective Resistance

Flow energy: \[\sum_{\text{edges}} (\text{flow on edge})^2 \]

Effective Resistance: \(R_{s,t}(G) \)
Smallest energy of any valid flow from \(s \) to \(t \) on \(G \).
Effective Resistance

$R_{s,t}(G)$ unit resistor

1 unit resistors

s

t
Effective Capacitance

Valid potential energy:
- 1 at s
- 0 at t
- Potential energy difference is 0 across edge
Effective Capacitance

Valid potential:
• 1 at s
• 0 at t
• Potential difference is 0 across edge
Effective Capacitance

Cut energy:
\[\sum_{\text{edges}} (\text{Potential Difference})^2 \]

Effective Capacitance: \(C_{s,t}(G) \)
Smallest cut energy of any valid potential between \(s \) to \(t \) on \(G \).
Effective Capacitance

\[C_{s,t}(G') \] unit capacitor

1 unit capacitor

0 resistance wires (short circuit)
Span Program Algorithm
Performance:

Query complexity of span program based st-connectivity algorithm =

\[O\left(\sqrt{\max_{G \in \mathcal{H}: \text{connected}} R_{s,t}(G)} \right) \cdot \sqrt{\max_{G \in \mathcal{H}: \text{not connected}} C_{s,t}(G)} \)

[Belovs, Reichard, ’12] [JJKP, in progress]
Outline

- Quantum Query Algorithms and Span Programs
- Structure of quantum speed-up for st-connectivity
- Applications
Applications: Boolean Formulas

Method of converting Boolean formulas into st-connectivity problems [Nissan and Ta-shma ’95, Jeffery & K ‘17]
Then use quantum algorithm for st-connectivity.

What is quantum complexity of deciding $\text{AND}(x_1, x_2, ..., x_N)$, promised
• All $x_i = 1$, or
• At least \sqrt{N} input variables are 0.
Example

What is quantum complexity of deciding if

- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H} : \text{connected}} R_{s,t}(G)} \quad \sqrt{\max_{G \in \mathcal{H} : \text{not connected}} C_{s,t}(G)}$$

Quantum complexity is $O(N^{1/4})$

Randomized classical complexity is $\Omega(N^{1/2})$
Example

Connectivity – is every vertex connected to every other vertex?

Connectivity =

\((st - \text{conn}) \land (su - \text{conn}) \land (uv - \text{conn}) \ldots\)
New Example

Connectivity – is every vertex connected to every other vertex?

Results:
- Worst case: $O(V^{3/2})$ ($V = \# \text{ vertices}$)
- Promised
 - YES – diameter is D
 - NO – κ connected components
 - $O(\sqrt{V\kappa D})$

Matches existing algorithms [Durr ‘06], [Arins ‘16] for worst case
Open Questions and Current Directions

• There are many other problems than use st-connectivity as a subroutine – does this improved analysis improve the complexity of those algorithms?
• Are there other problems that reduce to st-connectivity?
• What is the classical time/query complexity of st-connectivity in the black box model? Under the promise of small capacitance/resistance?
• Can the effective capacitance/effective resistance analysis be used to understand speed-ups more generally?