Quantum Algorithms for Connectivity: Applications and Analysis

Shelby Kimmel

Middlebury College

Based on work with Stacey Jeffery: arXiv: 1704.00765 (Quantum vol 1 p 26) Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, *in progress*

Middlebury

Finding new quantum algorithms

- Quantum computers are almost here!!
- What are we going to do with them?

Finding new quantum algorithms

- Find an important problem
 - o design a heuristic/provable quantum algorithm
- Better understand existing paradigms
 - Learn what structure quantum algorithms can take advantage of
 - Find problems that fit that structure

- Quantum Query Algorithms and Span Programs
- Structure of quantum speed-up for st-connectivity
- Applications

Quantum Query Algorithms

Quantum Oracle encodes an n-bit string x:

$$\begin{array}{c|c} |i\rangle \\ x \\ b \end{array} \begin{array}{c} |i\rangle \\ b \\ b \\ b \\ b \\ x_i \end{array} \rangle \quad x_i \text{ is } i \text{th bit of } x \end{array}$$

Given an oracle for x, want to evaluate f(x) for $f: \{0,1\}^n \rightarrow \{0,1\}$

Quantum query complexity of f is the number of uses of the oracle needed by a quantum algorithm to evaluate f

 $P = (H, U, \tau, A)$

- Finite dimensional inner product spaces $H_1 \oplus \cdots \oplus H_n$, and $\{H_{j,b} \subseteq H_j\}_{b \in \{0,1\}, j \in [n]}$ such that $H_{j,0} + H_{j,1} = H_j$
- Vector space U
- Non-zero target vector $\tau \in U$
- Linear operator $A: H \to U$

Each span program encodes a function $f: \{0,1\}^n \to \{0,1\}$ Each function $f: \{0,1\}^n \to \{0,1\}$ has an infinite number of span program representations

 $P = (H, U, \tau, A)$

- Finite dimensional inner product spaces $H_1 \oplus \cdots \oplus H_n$, and $\{H_{j,b} \subseteq H_j\}_{b \in \{0,1\}, j \in [n]}$ such that $H_{j,0} + H_{j,1} = H_j$
- Vector space U
- Non-zero target vector $\tau \in U$
- Linear operator $A: H \to U$

Connection to functions: $\forall x \in \{0,1\}^n$, let $H(x) = H_{1,x_1} \oplus \cdots \oplus H_{n,x_n}$

 $f(x) = 1 \leftrightarrow \exists |w\rangle \in H(x): A|w\rangle = \tau$

 $P = (H, U, \tau, A)$

- Finite dimensional inner product spaces $H_1 \oplus \cdots \oplus H_n$, and $\{H_{j,b} \subseteq H_j\}_{b \in \{0,1\}, j \in [n]}$ such that $H_{j,0} + H_{j,1} = H_j$
- Vector space U
- Non-zero target vector $\tau \in U$
- Linear operator $A: H \to U$

Given a span program for a function f, there is a procedure for creating a query algorithm for f based on that span program, where the query complexity of the algorithm depends only on the span program.

 $P = (H, U, \tau, A)$

- Finite dimensional inner product spaces $H_1 \oplus \cdots \oplus H_n$, and $\{H_{j,b} \subseteq H_j\}_{b \in \{0,1\}, j \in [n]}$ such that $H_{j,0} + H_{j,1} = H_j$
- Vector space U
- Non-zero target vector $\tau \in U$
- Linear operator $A: H \to U$

There exists a span program that corresponds to a quantum algorithm with optimal query complexity [Reichardt '09,'11]

 $P = (H, U, \tau, A)$

- Finite dimensional inner product spaces $H_1 \oplus \cdots \oplus H_n$, and $\{H_{j,b} \subseteq H_j\}_{b \in \{0,1\}, j \in [n]}$ such that $H_{j,0} + H_{j,1} = H_j$
- Vector space U
- Non-zero target vector $\tau \in U$
- Linear operator $A: H \to U$

Better understanding of the properties of span programs leads to a better understanding of quantum speed-ups!

- Quantum Query Algorithms and Span Programs
- Structure of quantum speed-up for st-connectivity
- Applications

st-connectivity

st - connectivity:
is there a path from s to t?

st-connectivity

Is there a path from s to t in a graph G?

$$i \Rightarrow G = (V, E) \Rightarrow e_i$$

Edge

$$e_i = 1 \text{ if } i^{th} \text{ edge is}$$

$$in E$$

$$e_i = 0 \text{ if edge is not}$$

$$in E$$

Let \mathcal{H} be the set of graphs G that the black box might contain.

Span Program for st-connectivity

First described by Karchmer and Wigderson ['93] when introduced span programs

Used by Belovs and Reichardt ['12] to create a quantum algorithm for stconnectivity

•
$$H_{i,1} = \operatorname{span}\{|u,v\rangle, |v,u\rangle: \{v,u\} = edge i\}$$

- $H_{i,0} = 0$
- $U = \operatorname{span}\{|v\rangle: v \in V\}$

•
$$A|u,v\rangle = |u\rangle - |v\rangle$$

• $\tau = |s\rangle - |t\rangle$

Witness is a path from s to t Ex: s to u to t: $A(|s,u\rangle + |u,t\rangle) = |s\rangle - |u\rangle + |u\rangle - |t\rangle = |s\rangle - |t\rangle$

Span Program Algorithm for stconnectivity

Nice properties of the span program-based quantum algorithm for *st*-connectivity

- Uses log-space (candidate for near term devices?) [Belovs & Reichardt '12]
- Under mild assumptions, query complexity equals time complexity [Belovs & Reichardt '12, Jeffery & K '17]
- Now: easier than ever to analyze query complexity

Span Program Algorithm Performance:

Query complexity of span program based st-connectivity algorithm =

 $O\left(\sum_{G\in\mathcal{H}:connected}}^{\max} R_{s,t}(G) \sqrt{\max_{G\in\mathcal{H}:not\ connected}}^{C} C_{s,t}(G)}\right)$

[Belovs, Reichard, '12]

[JJKP, in progress]

Effective Resistance

Valid flow:

- 1 unit in at s
- 1 unit out at t
- At all other nodes, zero net flow

Effective Capacitance

Valid potential energy:

- 1 at *s*
- 0 at *t*
- Potential energy difference is 0 across edge

Effective Capacitance

Valid potential:

- 1 at *s*
- 0 at *t*
- Potential difference is 0 across edge

Effective Capacitance

Effective Capacitance: $C_{s,t}(G)$ Smallest cut energy of any valid potential between s to t on G.

Span Program Algorithm Performance:

Query complexity of span program based st-connectivity algorithm =

 $O\left(\sum_{G\in\mathcal{H}:connected}}^{\max} R_{s,t}(G) \sqrt{\max_{G\in\mathcal{H}:not\ connected}}^{C} C_{s,t}(G)}\right)$

[Belovs, Reichard, '12]

[JJKP, in progress]

- Quantum Query Algorithms and Span Programs
- Structure of quantum speed-up for st-connectivity
- Applications

Applications: Boolean Formulas

Method of converting Boolean formulas into st-connectivity problems [Nissan and Ta-shma '95, Jeffery & K '17] Then use quantum algorithm for st-connectivity.

What is quantum complexity of deciding $AND(x_1, x_2, ..., x_N)$, promised

- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.

Example

What is quantum complexity of deciding if

- *s* and *t* are connected, or
- At least \sqrt{N} edges are missing

Quantum complexity is $O(N^{1/4})$

Randomized classical complexity is $\Omega(N^{1/2})$

Example

Connectivity – is every vertex connected to every other vertex?

Connectivity= $(st - conn) \land (su - conn) \land (uv - conn) \dots$

New Example

Connectivity – is every vertex connected to every other vertex?

Results:

- Worst case: $O(V^{3/2})$ (V = # vertices)
- Promised
 - YES diameter is D
 - NO κ connected components
 - $O(\sqrt{V\kappa D})$

Matches existing algorithms [Durr '06], [Arins '16] for worst case

Open Questions and Current Directions

- There are many other problems than use st-connectivity as a subroutine – does this improved analysis improve the complexity of those algorithms?
- Are there other problems that reduce to st-connectivity?
- What is the classical time/query complexity of st-connectivity in the black box model? Under the promise of small capacitance/resistance?
- Can the effective capacitance/effective resistance analysis be used to understand speed-ups more generally?