
Quantum Algorithms for
Connectivity:
Applications and Analysis
Shelby Kimmel
Middlebury College

Based on work with
Stacey Jeffery: arXiv: 1704.00765 (Quantum vol 1 p 26)
Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, in progress

Finding new quantum algorithms

• Quantum computers are almost here!!

• What are we going to do with them?

Finding new quantum algorithms

• Find an important problem
o design a heuristic/provable quantum algorithm

• Better understand existing paradigms
o Learn what structure quantum algorithms can take advantage of
o Find problems that fit that structure

Outline

• Quantum Query Algorithms and Span Programs
• Structure of quantum speed-up for st-connectivity
• Applications

Quantum Query Algorithms

!

Quantum Oracle encodes an "-bit string !:

⟩|&⨁!(
⟩|)⟩|)

⟩|& !(is)th bit of !

Given an oracle for !, want to evaluate * ! for *: 0,1 . → 0,1

Quantum query complexity of * is the number of uses of the
oracle needed by a quantum algorithm to evaluate *

Span Programs

! = ($, &, ', ()
• Finite dimensional inner product spaces $* ⊕⋯⊕$-, and

$.,/ ⊆ $. /∈ 2,* ,.∈[-] such that $.,2 + $.,* = $.
• Vector space &
• Non-zero target vector ' ∈ &
• Linear operator (:$ → &

Each span program encodes a function 8: 0,1 - → {0,1}
Each function 8: 0,1 - → {0,1} has an infinite number of span
program representations

Span Programs

! = ($, &, ', ()
• Finite dimensional inner product spaces $* ⊕⋯⊕$-, and

$.,/ ⊆ $. /∈ 2,* ,.∈[-] such that $.,2 + $.,* = $.
• Vector space &
• Non-zero target vector ' ∈ &
• Linear operator (:$ → &

Connection to functions:
∀9 ∈ 0,1 -, let $ 9 = $*,<= ⊕⋯⊕$-,<>

? 9 = 1 ↔ ∃ B ∈ $ 9 : (B = '

Span Programs

! = ($, &, ', ()
• Finite dimensional inner product spaces $* ⊕⋯⊕$-, and

$.,/ ⊆ $. /∈ 2,* ,.∈[-] such that $.,2 + $.,* = $.
• Vector space &
• Non-zero target vector ' ∈ &
• Linear operator (:$ → &

Given a span program for a function 8, there is a procedure for
creating a query algorithm for 8 based on that span program,
where the query complexity of the algorithm depends only on the
span program.

Span Programs

! = ($, &, ', ()
• Finite dimensional inner product spaces $* ⊕⋯⊕$-, and

$.,/ ⊆ $. /∈ 2,* ,.∈[-] such that $.,2 + $.,* = $.
• Vector space &
• Non-zero target vector ' ∈ &
• Linear operator (:$ → &

There exists a span program that corresponds to a quantum
algorithm with optimal query complexity [Reichardt ‘09,’11]

Span Programs

! = ($, &, ', ()
• Finite dimensional inner product spaces $* ⊕⋯⊕$-, and

$.,/ ⊆ $. /∈ 2,* ,.∈[-] such that $.,2 + $.,* = $.
• Vector space &
• Non-zero target vector ' ∈ &
• Linear operator (:$ → &

Better understanding of the properties of span programs leads to a
better understanding of quantum speed-ups!

Outline

• Quantum Query Algorithms and Span Programs
• Structure of quantum speed-up for st-connectivity
• Applications

st-connectivity

!

"

#$ − &'(()&$*+*$,:
is there a path from ! to "?

st-connectivity

! = ($, &)()*

Edge
label

•)* = 1 if (,- edge is
in &

•)* = 0 if edge is not
in &

2

4 5

6

7

1
3

5

6Let ℋ be the set of graphs ! that the
black box might contain.

Is there a path from 5 to 6 in a graph !?

Span Program for st-connectivity
First described by Karchmer and Wigderson [‘93] when introduced span
programs
Used by Belovs and Reichardt [‘12] to create a quantum algorithm for st-
connectivity

• !",$ = span |+, , , ,, + : ,, + = ./0. 1}
• !",3 = 0
• 5 = span |, : , ∈ 7}
• 8|+, ,⟩ = |+⟩ − |,⟩
• ; = < − =

Witness is a path from s to t
Ex: < to + to =: 8 |<, + + +, =) = < − + + + − = = |<⟩ − |=⟩

Span Program Algorithm for st-
connectivity
Nice properties of the span program-based quantum algorithm for !"-
connectivity

• Uses log-space (candidate for near term devices?) [Belovs & Reichardt ’12]
• Under mild assumptions, query complexity equals time complexity [Belovs &

Reichardt ‘12, Jeffery & K ‘17]
• Now: easier than ever to analyze query complexity

Span Program Algorithm
Performance:

Query complexity of span program based st-connectivity algorithm =

! max
%∈ℋ:)*++,)-,.

/0,- 2 max
%∈ℋ:+*-)*++,)-,.

30,- 2

[Belovs, Reichard, ’12] [JJKP, in progress]

Effective Resistance

!

"

1 unit of flow

1 unit of flow

Effective Resistance

!

"

1 unit of flow

1 unit of flow

Valid flow:
• 1 unit in at !
• 1 unit out at "
• At all other nodes, zero net

flow

1 unit
of flow

1 unit
of flow

$ unit of
flow 1 − $

unit of
flow

0 unit
of flow

Effective Resistance

!

"

1 unit of flow

1 unit of flow

Flow energy:

$
%&'%(

)*+, +- ./0. 1

1 unit
of flow

1 unit
of flow

0 unit
of flow

) unit of
flow 1 −)

unit of
flow

Effective Resistance

!

"

1 unit of flow

1 unit of flow

1 unit
of flow

1 unit
of flow

Flow energy:

$
%&'%(

)*+, +- ./0. 1

Effective Resistance: 2(,4(6)
Smallest energy of any valid flow from !
to " on 6.

0 unit
of flow

) unit of
flow 1 −)

unit of
flow

Effective Resistance

!

"

!

"

1 unit
resistors

$%,'()) unit
resistor

Effective Capacitance

!

"

Graph #:

Valid potential energy:
• 1 at !
• 0 at "
• Potential energy difference

is 0 across edge

Effective Capacitance

!

"

Graph #:

Valid potential:
• 1 at !
• 0 at "
• Potential difference is 0

across edge

1

1 1

0

0

Effective Capacitance

!

"

Graph #:
1

1 1

0

0

Cut energy:

'
()*(+

,-"./"012 3044.5./6. 7

Effective Capacitance: 8+,:(#)
Smallest cut energy of any valid potential
between ! to " on #.

Effective Capacitance

!

"

1 unit
capacitors

0 resistance
wires

!

"

%&,((*′) unit
capacitor

0 resistance
wires (short
circuit)

Span Program Algorithm
Performance:

Query complexity of span program based st-connectivity algorithm =

! max
%∈ℋ:)*++,)-,.

/0,- 2 max
%∈ℋ:+*-)*++,)-,.

30,- 2

[Belovs, Reichard, ’12] [JJKP, in progress]

Outline

• Quantum Query Algorithms and Span Programs
• Structure of quantum speed-up for st-connectivity
• Applications

Applications: Boolean Formulas

Method of converting Boolean formulas into st-connectivity problems
[Nissan and Ta-shma ’95, Jeffery & K ‘17]
Then use quantum algorithm for st-connectivity.

What is quantum complexity of deciding !"# $%, $', … , $) , promised
• All $* = 1, or
• At least " input variables are 0.

Example
What is quantum complexity of deciding if
• ! and " are connected, or
• At least # edges are missing

Quantum complexity is $ #%/'

1/ ##

Randomized classical complexity is Ω #%/*

max.∈ℋ:234452657 89,6(<) max.∈ℋ:436 234452657>9,6(<)

!

"

#

Example

2

4 5

6

7

1
3

(

)

Connectivity – is every vertex
connected to every other vertex?

Connectivity=
() − +,-- ∧ (/ − +,-- ∧ /0 − +,-- …

New Example 2

4 5

6
7

1
3

(

)

Connectivity – is every vertex
connected to every other vertex? 2

4
5

6

7
1 3

(

)
2

4
5

6
7

1
3

(

)

2

4
5

6

7
13

(

)

Results:
• Worst case: *(,-//) (, = # vertices)
• Promised

• YES – diameter is 0
• NO – 1 connected components
• * ,10

Matches existing algorithms [Durr ‘06],
[Arins ‘16] for worst case

Open Questions and Current
Directions
• There are many other problems than use st-connectivity as a

subroutine – does this improved analysis improve the complexity of
those algorithms?

• Are there other problems that reduce to st-connectivity?
• What is the classical time/query complexity of st-connectivity in the

black box model? Under the promise of small capacitance/resistance?
• Can the effective capacitance/effective resistance analysis be used to

understand speed-ups more generally?

