Turning States into Unitaries: Optimal Sample-Based Hamiltonian Simulation

Shelby Kimmel
Turning States Into Unitaries

\[e^{-i\rho t} \sigma e^{i\rho t} \]

(normally \(e^{-iHt} \), for \(H \) Hermitian, but density matrices are Hermitian!)
Turning States Into Unitaries

\[e^{-i\rho t} \sigma e^{i\rho t} \]
Turning States Into Unitaries

\[e^{-i\rho t} \sigma e^{i\rho t} \]
Turning States Into Unitaries

\[\rho \rightarrow e^{-i\rho t} \sigma e^{i\rho t} \]
Turning States Into Unitaries

\[\rho \]

\[e^{-i\rho t} \sigma e^{i\rho t} \]
Question

Are global necessary or are local-sequential operations sufficient?
Answer

Are global necessary or are local-sequential operations sufficient?

Local are sufficient!
Outline

1. Hamiltonian simulation
2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 a) Commutator and Anti-commutator simulation
 b) Jordan Lie Algebra simulation
4. Fun final application
Hamiltonian Simulation

Classical Description:
- Input: \(H = V(x) + \frac{\hat{p}^2}{2m} \)
- Cost: time, gates
- Method: e.g. Trotter-Suzuki

Black Box Description:
- Input: \(i \to \) non-zero elements of \(i^{th} \) row of \(H \)
- Cost: uses of box
- Method: (sparse) Low, Chuang / Berry, Childs, Kothari,
Sample-Based Hamiltonian Simulation

Density Matrix Description:

Input: \[H = \rho \]

Cost: copies of \(\rho \)
Sample-Based Hamiltonian Simulation

Density Matrix Description:

<table>
<thead>
<tr>
<th>Input:</th>
<th>$H = \rho$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost:</td>
<td>n, (copies of ρ)</td>
</tr>
<tr>
<td>Output:</td>
<td>$e^{-i\rho t} \sigma e^{i\rho t}$ to error δ in trace distance</td>
</tr>
</tbody>
</table>

$\rho \otimes n \otimes \sigma, \; t, \; \delta$
Sample-Based Hamiltonian Simulation

Density Matrix Description:

Input: \(H = \rho \)

Cost: \(n \), (copies of \(\rho \))

Output: \(e^{-i\rho t} \sigma e^{i\rho t} \) to error \(\delta \) in trace distance

- Most famous application: if \(\rho \) is mixed but has low rank, can produce pure state which is eigenvector of \(\rho \). (LMR 14)
Outline

1. Hamiltonian simulation
2. LMR (Lloyd, Mohseni, Rebentrost ‘14) Protocol & Optimality
3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 a) Sum of states simulation
 b) Commutator simulation
 c) Lie Algebra simulation
4. Fun final application
LMR Protocol
LMR Protocol

ρ source $\rightarrow \rho \sigma$
LMR Protocol

Partial SWAP: $e^{i\epsilon S} = \cos(\epsilon) \mathbb{I} - i \sin(\epsilon) S$

$S = \text{SWAP}$
LMR Protocol

\(\rho \) source

\(\tilde{\rho} \leftrightarrow \tilde{\sigma} \)
LMR Protocol

ρ

source

\[\tilde{\sigma} \]

\[\tilde{\rho} \]
LMR Protocol

\(\rho \)

source

\(\tilde{\sigma} \)
LMR Protocol

ρ source $\rightarrow \rho \tilde{\sigma}$
Partial SWAP: \(e^{i\epsilon S} = \cos(\epsilon) \mathbb{I} - i \sin(\epsilon) S \)

\[S = \text{SWAP} \]
LMR Protocol

ρ source

\[\tilde{\rho} \leftrightarrow \tilde{\sigma}' \]
LMR Protocol

\[\rho \quad \text{source} \]

\[\tilde{\sigma}' \]

\[\tilde{\rho} \]
LMR Protocol

\[\text{tr}_B \left[e^{-i\epsilon S} (\sigma_A \otimes \rho_B) e^{i\epsilon S} \right] = e^{-i\rho \epsilon} \sigma e^{i\rho \epsilon} + O(\epsilon^2) \]
LMR Protocol

$$tr_B \left[e^{-i\epsilon S} (\sigma_A \otimes \rho_B) e^{i\epsilon S} \right] = e^{-i\rho \epsilon} \sigma e^{i\rho \epsilon} + O(\epsilon^2)$$

$$\epsilon = \delta/t, \text{ repeat } t^2/\delta \text{ times: } e^{-i\rho t} \sigma e^{i\rho t} + O(\delta)$$
LMR Protocol

\[
tr_B \left[e^{-i\epsilon S} (\sigma_A \otimes \rho_B) e^{i\epsilon S} \right] = e^{-i\rho \epsilon} \sigma e^{i\rho \epsilon} + O(\epsilon^2)
\]

\[
\epsilon = \delta/t, \text{ repeat } t^2/\delta \text{ times: } \quad e^{-i\rho t} \sigma e^{i\rho t} + O(\delta)
\]

Uses \(O(t^2/\delta)\) samples
LMR Seems Too Simple

- Could we do better using global op?
LMR Seems Too Simple

- Could we do better using global op?
LMR Seems Too Simple

- Could we do better using global op?

- E.g, near optimal tomography of ρ requires global operation (1,2)

1. Haah et al., 2015
2. O’Donnell, Wright 2015
LMR Seems Too Simple

- Could we do better using global op?
- How about tomography? Get estimate $\tilde{\rho}$ of ρ, then implement $H = \tilde{\rho}$
 - Worse Scaling!
 - Tomography scales with dimension and rank of ρ
 - For constant dimension, scaling with precision is worse by square root factor!
LMR Seems Too Simple

- Change tactics: instead of trying to improve on LMR by using global operations, can we prove LMR is optimal!
Lower Bound Sketch

I. Proof by Contradiction:

Task:

Task requires n samples

If could do sample-based Hamiltonian simulation better than LMR, could do task with fewer than n samples
Lower Bound Sketch

I. Proof by Contradiction:

Task: Decide if \(\rho \) is \(\begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix} \) or \(\begin{bmatrix} 1/2 + \epsilon & 0 \\ 0 & 1/2 - \epsilon \end{bmatrix} \), with probability \(\geq 2/3 \)

Task requires \(n \) samples of \(\rho \): \(n = \Omega \left(\frac{1}{\epsilon^2} \right) \). (Bound uses trace distance)

If could do sample-based Hamiltonian simulation better than LMR, could do task with fewer than \(n \) samples
Lower Bound Sketch

I. Proof by Contradiction:

Task: Decide if ρ is $\begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$ or $\begin{pmatrix} 1/2 + \epsilon & 0 \\ 0 & 1/2 - \epsilon \end{pmatrix}$, with probability $\geq 2/3$

Task requires n samples of ρ: $n = \Omega(\frac{1}{\epsilon^2})$. (Bound uses trace distance)

- $\exp[-i\rho t] = \begin{cases}
\mathbb{I} & \text{when } \rho \text{ is max. mixed} \\
Z & \text{when } \rho \text{ is not max. mixed and } t = \frac{\pi}{2\epsilon}
\end{cases}$

If could do sample-based Hamiltonian simulation for time t and accuracy $1/3$ with fewer than $O(t^2)$ samples \rightarrow contradiction
Lower Bound Sketch

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I $\Rightarrow f \left(t, \frac{1}{3} \right) = \Omega(t^2)$
Lower Bound Sketch

Let \(f(t, \delta) \) be the number of samples required to simulate \(H = \rho \) for time \(t \) to accuracy \(\delta \) using an optimal protocol.

Part I \(\Rightarrow f \left(t, \frac{1}{3} \right) = \Omega(t^2) \)

II. Concatenation

Suppose can simulate \(H = \rho \) for time \(\tau \) to accuracy \(\delta \)
Then can simulate \(H = \rho \) for time \(m\tau \) to accuracy \(m\delta \) by repeating \(m \in \mathbb{Z}^+ \) times
Lower Bound Sketch

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I $\Rightarrow f\left(t, \frac{1}{3}\right) = \Omega(t^2)$

II. Concatenation

Suppose can simulate $H = \rho$ for time τ to accuracy δ
Then can simulate $H = \rho$ for time mt to accuracy $m\delta$ by repeating $m \in \mathbb{Z}^+$ times:

$$f(mt, m\delta) \leq mf(t, \delta)$$
Lower Bound Sketch

Let \(f(t, \delta) \) be the number of samples required to simulate \(H = \rho \) for time \(t \) to accuracy \(\delta \) using an optimal protocol.

Part I \(\Rightarrow f \left(t, \frac{1}{3} \right) = \Omega(t^2) \)

II. Concatenation

Suppose can simulate \(H = \rho \) for time \(\tau \) to accuracy \(\delta \)
Then can simulate \(H = \rho \) for time \(m\tau \) to accuracy \(m\delta \) by repeating \(m \in \mathbb{Z}^+ \) times:

\[
f(mt, m\delta) \leq mf(t, \delta)
\]

\(m\delta \) can be 1/3
\(\delta \) can be small!

\[
f(t, \delta) = \Omega(t^2/\delta)
\]
Lower Bound Sketch

Proof sketch used mixed states, but using similar ideas, can prove also optimal for pure states.
Application of Lower Bound

State-based Grover Search:

Given:

- O_S s.t. $O_S |\psi\rangle |b\rangle = \begin{cases} |\psi\rangle |b \oplus 1\rangle & \text{if } |\psi\rangle \in S, \text{ for } S \text{ a subspace of } \mathbb{C}^{2^n} \\ |\psi\rangle |b\rangle & \text{otherwise} \end{cases}$

- Sample access to an unknown state $|\phi\rangle$

Decide: Is overlap of $|\phi\rangle$ with S zero or λ, promised one is the case, using as few copies of $|\phi\rangle$ possible.
Application of Lower Bound

State-based Grover Search:

Normally: \(O\left(\frac{1}{\sqrt{\lambda}}\right) \) uses of \(O_S \)

In our case: We show require \(\Omega\left(\frac{1}{\lambda}\right) \) copies of \(|\phi\rangle \)

Why:
- In Grover’s algorithm, need to reflect about \(|\phi\rangle \), but given only sample access to \(|\phi\rangle \), this is difficult!
- Can use Hamiltonian simulation, but not very efficient.
Application of Lower Bound

State-based Grover Search:

Given:

- O_S s.t. $O_S |\psi\rangle|b\rangle =
 \begin{cases}
 |ψ\rangle|b \oplus 1\rangle & \text{if } |ψ\rangle \in S, \text{ for } S \text{ a subspace of } \mathbb{C}^{2^n} \\
 |ψ\rangle|b\rangle & \text{otherwise}
 \end{cases}$

- Sample access to an unknown state $|φ\rangle$

Decide: Is overlap of $|φ\rangle$ with S zero or $λ$, promised one is the case, using as few copies of $|φ\rangle$ possible.
Outline

1. Hamiltonian simulation
2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 a) Useful tools
 i. Split Simulation Tool
 ii. Addition Tool
 b) Sum of states simulation
 c) Commutator & Anti-commutator simulation
 d) Jordan-Lie Algebra simulation
4. Fun final application
Split Simulation

Suppose can prepare the state

$$\rho' = |0\rangle \langle 0| \otimes \rho_+ + |1\rangle \langle 1| \otimes \rho_-$$

Where $\rho_+, \rho_- \succeq 0$ are subnormalized states, but $\rho_+ + \rho_-$ is a normalized state. Then can simulate

$$H = \rho_+ - \rho_-$$

for time t, accuracy δ, using $O\left(\frac{t^2}{\delta}\right)$ copies of ρ'
Split Simulation

Suppose can prepare the state

$$\rho' = |0\rangle\langle 0| \otimes \rho_+ + |1\rangle\langle 1| \otimes \rho_-$$

Where $\rho_+, \rho_- \geq 0$ are subnormalized states, but $\rho_+ + \rho_-$ is a normalized state. Then can simulate

$$H = \rho_+ - \rho_-$$

for time t, accuracy δ, using $O\left(\frac{t^2}{\delta}\right)$ copies of ρ'

- Idea: Apply unitary

$$|0\rangle\langle 0| \otimes e^{-iSE} + |1\rangle\langle 1| \otimes e^{iSE}$$
Suppose can prepare the state

\[\rho' = |0\rangle \langle 0| \otimes \rho_+ + |1\rangle \langle 1| \otimes \rho_- \]

Where \(\rho_+, \rho_- \geq 0 \) are subnormalized states, but \(\rho_+ + \rho_- \) is a normalized state. Then can simulate

\[H = \rho_+ - \rho_- \]

for time \(t \), accuracy \(\delta \), using \(O(\frac{t^2}{\delta}) \) copies of \(\rho' \).

- Idea: Apply unitary

\[|0\rangle \langle 0| \otimes e^{-iS\epsilon} + |1\rangle \langle 1| \otimes e^{iS\epsilon} \]

to state

\[(|0\rangle \langle 0| \otimes \rho_+ + |1\rangle \langle 1| \otimes \rho_-) \otimes \sigma \]

then discard first qubit
Addition tool

If have sample access to ρ_1 and ρ_2, then can create by sampling

$$p\rho_1 + (1 - p)\rho_2$$

Can easily simulate $H = p\rho_1 + (1 - p)\rho_2$, even if ρ_1, ρ_2 don’t commute
Sum of States Simulation

Given: $\rho_1, \rho_2, ..., \rho_k$ and $a_1, a_2, ..., a_k \in \mathbb{R}$

Simulate: $H = \sum_i a_i \rho_i$ for time t, error δ
Sum of States Simulation

Given: \(\rho_1, \rho_2, \ldots, \rho_k \) and \(a_1, a_2, \ldots, a_k \in \mathbb{R} \)

Simulate: \(H = \sum_i a_i \rho_i \) for time \(t \), error \(\delta \)

- Sample \(\rho_i \) with prob. \(|a_i|/a \), where \(a = \sum_i |a_i| \)
 - if \(a_i > 0 \) append \(|0\rangle \langle 0| \)
 - if \(a_i < 0 \) append \(|1\rangle \langle 1| \):

\[
|0\rangle \langle 0| \otimes \frac{1}{a} \sum_{i:a_i>0} a_i \rho_i + |1\rangle \langle 1| \otimes \frac{1}{a} \sum_{i:a_i<0} |a_i| \rho_i
\]
Sum of States Simulation

Given: $\rho_1, \rho_2, \ldots, \rho_k$ and $a_1, a_2, \ldots, a_k \in \mathbb{R}$

Simulate: $H = \sum_i a_i \rho_i$ for time t, error δ

- Sample ρ_i with prob. $|a_i|/a$, where $a = \sum_i |a_i|$
 - if $a_i > 0$ append $|0\rangle\langle 0|$, if $a_i < 0$ append $|1\rangle\langle 1|$

\[
|0\rangle\langle 0| \otimes \frac{1}{a} \sum_{i:a_i>0} a_i \rho_i + |1\rangle\langle 1| \otimes \frac{1}{a} \sum_{i:a_i<0} |a_i| \rho_i
\]

- Then use split simulation: $H = a \left(\frac{1}{a} \sum_{i:a_i>0} a_i \rho_i - \frac{1}{a} \sum_{i:a_i<0} |a_i| \rho_i \right)$

Requires $O(a^2 t^2 / \delta)$ samples, ρ_j sampled $O\left(|a_j|a t^2 / \delta\right)$ times on average
Commutator/Anti-commutator Simulation

Given: ρ_1, ρ_2

Simulate: $H = i[\rho_1, \rho_2]$ or $H = \{\rho_1, \rho_2\}$ for time t, error δ
Commutator/Anti-commutator Simulation

\[\frac{1}{\sqrt{2}} \left| 0 \right> + \frac{e^{i\phi}}{\sqrt{2}} \left| 1 \right> \]

- Claim output of circuit is:

\[|0\rangle \langle 0| \otimes \rho_+ + |1\rangle \langle 1| \otimes \rho_- \]

where

\[\rho_+ - \rho_- = \frac{1}{2} \left(e^{i\phi} \rho_1 \rho_2 + e^{-i\phi} \rho_2 \rho_1 \right) \]
Commutator/Anti-commutator Simulation

Given: \(\rho_1, \rho_2 \)

Simulate: \(H = i[\rho_1, \rho_2] \) or \(H = \{\rho_1, \rho_2\} \) for time \(t \), error \(\delta \)

Uses \(O(t^2/\delta) \) samples
Applications of Commutator Simulation

• **State Addition:**

 \[e^{[\langle \psi_1 | \rangle \langle \psi_1 | , \langle \psi_2 | \rangle \langle \psi_2 |]} t \] is a rotation of the 2-D subspace spanned by \([\psi_1]\) and \([\psi_2]\).* Can rotate \([\psi_1]\) to \(\alpha [\psi_1] + \beta [\psi_2]\).

• **Orthogonality Testing:**

 Commutator of two orthogonal states is 0. Commutator simulation gives optimal strategy to test orthogonality (square root improvement over swap test).

* For \(\langle \psi_1 | \psi_2 \rangle = \lambda \neq 0\)
Jordan-Lie Algebra Simulation

<table>
<thead>
<tr>
<th>Given:</th>
<th>$\rho_1, \rho_2, \ldots, \rho_k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulate:</td>
<td>$H = e^{i\phi} \rho_1 \rho_2 \ldots \rho_k + e^{-i\phi} \rho_k \rho_{k-1} \ldots \rho_1$</td>
</tr>
</tbody>
</table>
\[\frac{1}{\sqrt{2}} |0\rangle + \frac{e^{i\phi}}{\sqrt{2}} |1\rangle \]

\[S: (1 \to 2, 2 \to 3 \ldots k \to 1) \]

\[\rho_+ - \rho_- = \frac{1}{2} (e^{i\phi} \rho_1 \rho_2 \ldots \rho_k + e^{-i\phi} \rho_k \ldots \rho_2 \rho_1) \]
Jordan-Lie Algebra Simulation

Given: \(\rho_1, \rho_2, \ldots, \rho_k \)

Simulate:
\[
H = e^{i\phi} \rho_1 \rho_2 \cdots \rho_k + e^{-i\phi} \rho_k \rho_{k-1} \cdots \rho_1
\]

Uses \(O(kt^2/\delta) \) samples
Jordan-Lie Algebra Simulation

Given: \(\rho_1, \rho_2, \ldots, \rho_k \)

Simulate: \(H = \sum_j a_j (e^{i\phi_j} \rho_{j1} \rho_{j2} \cdots \rho_{jk} + e^{-i\phi_j} \rho_{jk} \rho_{jk-1} \cdots \rho_{j1}) \)
Jordan-Lie Algebra Simulation

Given: \(\rho_1, \rho_2, \ldots, \rho_k, \) and \(a_1, a_2, \ldots, a_k \in \mathbb{R} \)

Simulate: \(H = \sum_j a_j (e^{i\phi_j} \rho_{r_1} \rho_{r_2} \cdots \rho_{r_{|j|}} + e^{-i\phi_j} \rho_{r_{|j|}} \rho_{r_{|j|-1}} \cdots \rho_{r_1}) \)

Uses \(O(La^2t^2/\delta) \) samples total

- \(L = \max_j |j_k| \)
- \(a = \sum_j |a_j| \)
Fun Side-bar: Universal Model of QC

- **Fact 1:**
 Partial SWAP (Heisenberg exchange) + single qubit gates are universal for quantum computing. [3] (In particular, arbitrary single qubit X and Z rotations).

- **Fact 2:**
 - $e^{-i\rho t}$ with $\rho = |+\rangle \langle +|$ give arbitrary X rotations
 - $e^{-i\rho t}$ with $\rho = |0\rangle \langle 0|$ give arbitrary Z rotations

- **Consequence:**
 Heisenberg exchange plus source of $|+\rangle$ and $|0\rangle$ states is universal for quantum computing (with polynomial overhead.)

Open Questions

1. Is Multi-State Hamiltonian simulation optimal?
2. Is general Jordan Lie algebra simulation optimal?
3. Copyright protection?
4. Other applications?