Turning States into Unitaries: Optimal Sample-Based Hamiltonian Simulation

Shelby Kimmel

Cedric Lin (QuICS)
Guang Hao Low (MIT)
Maris Ozols (Cambridge)
Ted Yoder (MIT)
Turning States Into Unitaries

\[e^{-i\rho t} \sigma e^{i\rho t} \]

(normal \(e^{-iHt} \), for \(H \) Hermitian, but density matrices are Hermitian!)
Turning States Into Unitaries

\[e^{-i\rho t} \sigma e^{i\rho t} \]
Turning States Into Unitaries

\[e^{-i\rho t} \sigma e^{i\rho t} \]
Turning States Into Unitaries

\[
\rho + \sigma \rightarrow e^{-i\rho t} \sigma e^{i\rho t}
\]
Turning States Into Unitaries

$$e^{-i\rho t} \sigma e^{i\rho t}$$
Answer

Are global necessary or are local-sequential operations sufficient?
Answer

Are global necessary or are local-sequential operations sufficient?

Local are sufficient!
Outline

1. Hamiltonian simulation
2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 a) Sum of states simulation
 b) Commutator simulation
 c) Lie Algebra simulation
4. Fun final application
Outline

1. Hamiltonian simulation
2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 a) Sum of states simulation
 b) Commutator simulation
 c) Lie Algebra simulation
4. Fun final application
Hamiltonian Simulation

Classical Description:
- Input: $H = V(x) + \frac{\hat{p}^2}{2m}$
- Cost: time, gates
- Method: e.g. Trotter-Suzuki

Black Box Description:
- Input: $i \rightarrow \text{non-zero elements of } i^{th} \text{ row of } H$
- Cost: uses of box
- Method: (sparse) Low, Chuang / Berry, Childs, Kothari,
Sample-Based Hamiltonian Simulation

Density Matrix Description:

Input: \[H = \rho \]
Cost: copies of \(\rho \)
Sample-Based Hamiltonian Simulation

Density Matrix Description:

Input: \(H = \rho \) \((\rho^\otimes n \otimes \sigma, \ t)\)

Cost: copies of \(\rho \)

Output: \(e^{-i\rho t} \sigma e^{i\rho t} \) (to error \(\delta \) in trace distance)
Outline

1. Hamiltonian simulation
2. LMR (Lloyd, Mohseni, Rebentrost ‘14) Protocol & Optimality
3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 a) Sum of states simulation
 b) Commutator simulation
 c) Lie Algebra simulation
4. Fun final application
LMR Protocol
LMR Protocol

ρ
source

ρ σ
Partial SWAP: \[e^{i\epsilon S} = \cos(\epsilon) \mathbb{I} - i \sin(\epsilon) S \]

\[S = \text{SWAP} \]
LMR Protocol

\(\rho \) source

\[\tilde{\rho} \leftrightarrow \tilde{\sigma} \]
LMR Protocol

\[\rho \text{ source} \]
LMR Protocol

ρ
source

→

ρ ~σ
LMR Protocol

Partial SWAP: \[e^{i\epsilon S} = \cos(\epsilon) \mathbb{I} - i \sin(\epsilon) S \]

\[S = \text{SWAP} \]
LMR Protocol

\(\rho\) source

\(\tilde{\rho}\) \(\tilde{\sigma}'\)
LMR Protocol

\(\rho \) source

\(\tilde{\rho} \)

\(\tilde{\sigma}' \)
LMR Protocol

\[\text{tr}_B \left[e^{-i\epsilon S} (\sigma_A \otimes \rho_B) e^{i\epsilon S} \right] = e^{-i\rho \epsilon} \sigma e^{i\rho \epsilon} + O(\epsilon^2) \]
LMR Protocol

\[tr_B \left[e^{-i\epsilon S} (\sigma_A \otimes \rho_B) e^{i\epsilon S} \right] = e^{-i\rho \epsilon} \sigma e^{i\rho \epsilon} + O(\epsilon^2) \]

\(\epsilon = \delta/t, \) repeat \(t^2/\delta \) times: \(e^{-i\rho t} \sigma e^{i\rho t} + O(\delta) \)
LMR Protocol

\[\text{tr}_B \left[e^{-i\epsilon S} (\sigma_A \otimes \rho_B) e^{i\epsilon S} \right] = e^{-i\rho \epsilon} \sigma e^{i\rho \epsilon} + O(\epsilon^2) \]

\[\epsilon = \delta/t, \text{ repeat } t^2/\delta \text{ times: } e^{-i\rho t} \sigma e^{i\rho t} + O(\delta) \]

Uses \(O(t^2/\delta) \) samples
LMR Protocol

\[tr_B \left[e^{-i\epsilon S} (\sigma_A \otimes \rho_B) e^{i\epsilon S} \right] = e^{-i\rho \epsilon} \sigma e^{i\rho \epsilon} + O(\epsilon^2) \]

\[\epsilon = \delta/t, \text{ repeat } t^2/\delta \text{ times: } e^{-i\rho t} \sigma e^{i\rho t} + O(\delta) \]

Uses \(O(t^2/\delta) \) samples

- LMR Application: Quantum Machine Learning
LMR Protocol

\[tr_B \left[e^{-i\epsilon S} (\sigma_A \otimes \rho_B) e^{i\epsilon S} \right] = e^{-i\rho \epsilon} \sigma e^{i\rho \epsilon} + O(\epsilon^2) \]

\[\epsilon = \delta / t, \text{ repeat } t^2 / \delta \text{ times: } e^{-i\rho t} \sigma e^{i\rho t} + O(\delta) \]

Uses \(O(t^2 / \delta) \) samples

- LMR Application: Quantum Machine Learning
 - Generate quantum descriptions of eigenstates of low rank density matrices (modulo errors in protocol that we can fix)
LMR Seems Too Simple

- Could we do better using global op?
LMR Seems Too Simple

- Could we do better using global op?

\[\rho \text{ source} \rightarrow \rho, \sigma \]
LMR Seems Too Simple

- Could we do better using global op?

- E.g., near optimal tomography of ρ requires global operation (1,2)

1. Haah et al., 2015
2. O’Donnell, Wright 2015
LMR Seems Too Simple

- Could we do better using global op?

- How about tomography? Get estimate $\tilde{\rho}$ of ρ, then implement $H = \tilde{\rho}$
 - Worse Scaling!
 - Tomography scales with dimension and rank of ρ
 - For constant dimension, scaling with precision is worse by square root factor!
LMR Seems Too Simple

- Change tactics: instead of trying to improve on LMR by using global operations, can we prove LMR is optimal!
Lower Bound Sketch

I. Proof by Contradiction:

Task:

Task requires n samples

If could do sample-based Hamiltonian simulation better than LMR, could do task with fewer than n samples
Lower Bound Sketch

I. Proof by Contradiction:

Task: Decide if \(\rho \) is \[\begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix} \] or \[\begin{bmatrix} 1/2 + \epsilon & 0 \\ 0 & 1/2 - \epsilon \end{bmatrix} \], with probability \(\geq 2/3 \).

Task requires \(n \) samples of \(\rho \): \(n = \Omega \left(\frac{1}{\epsilon^2} \right) \). (Bound uses trace distance)

If could do sample-based Hamiltonian simulation better than LMR, could do task with fewer than \(n \) samples.
Lower Bound Sketch

I. Proof by Contradiction:

Task: Decide if ρ is $\begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$ or $\begin{bmatrix} 1/2 + \epsilon & 0 \\ 0 & 1/2 - \epsilon \end{bmatrix}$, with probability $\geq 2/3$

Task requires n samples of ρ: $n = \Omega \left(\frac{1}{\epsilon^2} \right)$. (Bound uses trace distance)

- $\exp[-i\rho t] = \begin{cases}
\mathbb{I} & \text{when } \rho \text{ is max. mixed} \\
Z & \text{when } \rho \text{ is not max. mixed and } t = \frac{\pi}{2\epsilon}
\end{cases}$

If could do sample-based Hamiltonian simulation for time t and accuracy $1/3$ with fewer than $O(t^2)$ samples → contradiction
Lower Bound Sketch

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I $\Rightarrow f\left(t, \frac{1}{3}\right) = \Omega(t^2)$
Lower Bound Sketch

Let $f(t, \delta)$ be the number of samples required to simulate $H = \rho$ for time t to accuracy δ using an optimal protocol.

Part I $\Rightarrow f\left(t, \frac{1}{3}\right) = \Omega(t^2)$

II. Concatenation

If can simulate $H = \rho$ for time τ to accuracy δ
Then can simulate $H = \rho$ for time $m\tau$ to accuracy $m\delta$ by repeating $m \in \mathbb{Z}^+$ times:

$$f(mt, m\delta) \leq mf(t, \delta)$$
Lower Bound Sketch

Let \(f(t, \delta) \) be the number of samples required to simulate \(H = \rho \) for time \(t \) to accuracy \(\delta \) using an optimal protocol.

Part I \(\Rightarrow f \left(t, \frac{1}{3} \right) = \Omega(t^2) \)

II. Concatenation

If can simulate \(H = \rho \) for time \(\tau \) to accuracy \(\delta \) Then can simulate \(H = \rho \) for time \(m\tau \) to accuracy \(m\delta \) by repeating \(m \in \mathbb{Z}^+ \) times:

\[
f(m\tau, m\delta) \leq mf(t, \delta)
\]

\(m\delta \) can be \(1/3 \)
\(\delta \) can be small!

\[
f(t, \delta) = \Omega(t^2/\delta)
\]
Lower Bound Sketch

Proof sketch used mixed states, but using similar ideas, can prove also optimal for pure states.
Application of Lower Bound

State-based Grover Search:

Given:

- O_S s.t. $O_S |\psi\rangle|b\rangle = \begin{cases} |\psi\rangle|b \oplus 1\rangle & \text{if } |\psi\rangle \in S, \text{ for } S \text{ a subspace of } \mathbb{C}^{2^n} \\ |\psi\rangle|b\rangle & \text{otherwise} \end{cases}$

- Sample access to an unknown state $|\phi\rangle$

Decide: Is overlap of $|\phi\rangle$ with S zero or λ, promised one is the case, using as few copies of $|\phi\rangle$ possible.
Application of Lower Bound

State-based Grover Search:

Normally: $O\left(\frac{1}{\sqrt{\lambda}}\right)$ uses of O_S

In our case: We show require $\Omega\left(\frac{1}{\lambda}\right)$ copies of $|\phi\rangle$

Why:
- In Grover’s algorithm, need to reflect about $|\phi\rangle$, but given only sample access to $|\phi\rangle$, this is difficult!
- Can use Hamiltonian simulation, but not very efficient.
Application of Lower Bound

State-based Grover Search:

Given:

- O_S s.t. $O_S|\psi\rangle|b\rangle = \begin{cases} |\psi\rangle|b \oplus 1\rangle & \text{if } |\psi\rangle \in S, \text{ for } S \text{ a subspace of } \mathbb{C}^{2^n} \\ |\psi\rangle|b\rangle & \text{otherwise} \end{cases}$

- Sample access to an unknown state $|\phi\rangle$

Decide: Is overlap of $|\phi\rangle$ with S zero or λ, promised one is the case, using as few copies of $|\phi\rangle$ possible.
Outline

1. Hamiltonian simulation
2. LMR (Lloyd, Mohseni, Rebentrost) Protocol & Optimality
3. Protocols & Applications of Sample-Based Hamiltonian Simulation
 a) Sum of states simulation
 b) Commutator simulation
 c) Lie Algebra simulation
4. Fun final application
Sum of States Simulation

Given: \(\rho_1, \rho_2, \ldots, \rho_k \) and \(a_1, a_2, \ldots, a_k \in \mathbb{R} \)

Simulate: \(H = \sum_i a_i \rho_i \)
Sum of States Simulation

Given: \(\rho_1, \rho_2, \ldots, \rho_k \) and \(a_1, a_2, \ldots, a_k \in \mathbb{R} \)

Simulate: \(H = \sum_i a_i \rho_i \)

<table>
<thead>
<tr>
<th>Given:</th>
<th>(\rho_1 \otimes n_1 \otimes \cdots \otimes \rho_k \otimes n_k \otimes \sigma) ((\rho_i, \sigma) arbitrary states)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create:</td>
<td>(e^{-iHt} \sigma e^{-iHt}) (to error (\delta) in trace distance)</td>
</tr>
</tbody>
</table>
Sum of States Simulation

Given: \(\rho_1, \rho_2, \ldots, \rho_k \) and \(a_1, a_2, \ldots, a_k \in \mathbb{R} \)

Simulate: \(H = \sum_i a_i \rho_i \)

Given: \(\rho_1 \otimes n_1 \otimes \cdots \otimes \rho_k \otimes n_k \otimes \sigma \) (\(\rho_i, \sigma \) arbitrary states)

Create: \(e^{-iHt} \sigma e^{-iHt} \) (to error \(\delta \) in trace distance)

Our Protocol: uses \(n_j = O \left(\frac{|a_j|a t^2}{\delta} \right) \), where \(a = \sum_i |a_i| \)
Commutator Simulation

Given: \(\rho_1, \rho_2 \)
Simulate: \(H = i[\rho_1, \rho_2] \)

Given: \(\rho_1 \otimes^n \otimes \rho_2 \otimes^n \otimes \sigma \) (\(\rho, \sigma \) arbitrary states)
Create: \(e^{[\rho_1, \rho_2]t} \sigma e^{[\rho_1, \rho_2]t} \) (to error \(\delta \) in trace distance)
Commutator Simulation

\[\rho_1 \] source

\[\rho_2 \] source

\[\rho_1 \]

\[\rho_2 \]

\[e^{-iS\pi/4} \]

\[\frac{1}{2} (\rho_1 + \rho_2 + i[\rho_1, \rho_2]) \]
Commutator Simulation

\[i[\rho_1, \rho_2] = 2 \rho_{12} - \rho_1 - \rho_2 \]

- Use Sum of State Simulation!
- Uses \(O \left(\frac{t^2}{\delta} \right) \) copies each of \(\rho_1 \) and \(\rho_2 \)
- Can prove optimal using similar approach as before
Applications of Commutator Simulation

• **State Addition:**

 \[e^{[|\psi_1\rangle\langle\psi_1|,|\psi_2\rangle\langle\psi_2|]t} \] is a rotation of the 2-D subspace spanned by \(|\psi_1\rangle\) and \(|\psi_2\rangle\).* Can rotate \(|\psi_1\rangle\) to \(\alpha|\psi_1\rangle + \beta|\psi_2\rangle\).

• **Orthogonality Testing:**

 Commutator of two orthogonal states is 0. Commutator simulation gives optimal strategy to test orthogonality (square root improvement over swap test).

* For \(\langle\psi_1|\psi_2\rangle = \lambda \neq 0\)
Lie Algebra Simulation

Given: \(\rho_1, \rho_2, \ldots, \rho_k \)

Simulate: Any element of Lie algebra generated by \(\{\rho_1, \rho_2, \ldots, \rho_k\} \)

That is, any linear combination of nested commutators of \(\rho_1, \rho_2, \ldots, \rho_k \), e.g. \(H = \rho_1 + [\rho_2, [\rho_3, \rho_5]] \)

Our Protocol: exponential samples in \# of \(\rho_i \) in a single term

- Idea: use \(\pi/4 \) swaps to create states with nested commutator components, then use state addition simulation to get rid of unwanted terms.
Fun Side-bar: Universal Model of QC

- **Fact 1:**
 Partial SWAP (Heisenberg exchange) + single qubit gates are universal for quantum computing. [3] (In particular, arbitrary single qubit X and Z rotations).

- **Fact 2:**
 - $e^{-i\rho t}$ with $\rho = |+\rangle\langle+|$ give arbitrary X rotations
 - $e^{-i\rho t}$ with $\rho = |0\rangle\langle0|$ give arbitrary Z rotations

- **Consequence:**
 Heisenberg exchange plus source of $|+\rangle$ and $|0\rangle$ states is universal for quantum computing (with polynomial overhead.)

Open Questions

1. Is Multi-State Hamiltonian simulation optimal?
2. Is general Lie algebra simulation optimal?
3. Copyright protection?
4. Other applications?