Path Detection: A Quantum Computing Primitive

Shelby Kimmel

Middlebury College

Based on work with
Stacey Jeffery: arXiv: 1704.00765 (Quantum vol 1 p 26)
Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, in progress
How to make quantum algorithms accessible?
How to make quantum algorithms accessible?

• Need quantum algorithmic primitives
How to make quantum algorithms accessible?

• Need quantum algorithmic primitives
 1. Apply to a wide range of problems
 2. Easy to understand and analyze (without knowing quantum mechanics)
How to make quantum algorithms accessible?

- Need quantum algorithmic primitives
 1. Apply to a wide range of problems
 2. Easy to understand and analyze (without knowing quantum mechanics)

 - Ex: Searching unordered list of n items
 - Classically, takes $\Omega(n)$ time
 - Quantumly, takes $O(\sqrt{n})$ time
How to make quantum algorithms accessible?

• Need quantum algorithmic primitives
 1. Apply to a wide range of problems
 2. Easy to understand and analyze (without knowing quantum mechanics)
 – Ex: Searching unordered list of n items
 – Classically, takes $\Omega(n)$ time
 – Quantumly, takes $O(\sqrt{n})$ time

• New primitive: st-connectivity
Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive
 1. Applies to a wide range of problems
 2. Easy to understand (without knowing quantum mechanics)
C. Applications and performance of algorithm
st-connectivity

st – connectivity: is there a path from s to t?
st-connectivity

st – connectivity: is there a path from s to t?
Black Box Model

Edge label

- $e_i = 1$ if i^{th} edge is there
- $e_i = 0$ if edge is not there

Let \mathcal{H} be the set of graphs G that the black box might contain.
Figure of Merit

• Query Complexity
 – Number of uses (queries) of the black box
 – All other operations are free

• Under mild assumption, for our algorithm,
 quantum query complexity \cong quantum time complexity
Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive
 1. Applies to a wide range of problems
 2. Easy to understand (without knowing quantum mechanics)
C. Applications and performance of algorithm
Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive
 1. Applies to a wide range of problems
 • Evaluating Boolean formulas reduces to st-connectivity
 2. Easy to understand (without knowing quantum mechanics)
C. Applications and performance of algorithm
Boolean Formulas

- \bigwedge: outputs 1 if all inputs are 1
- \bigvee: outputs 1 if any input is 1

Value 0 or 1

$f(x) = \bigwedge \bigvee \bigwedge \bigvee \bigwedge \bigvee
\bigwedge \bigvee
\bigwedge \bigvee
\bigwedge \bigvee
\bigwedge \bigvee
\bigwedge \bigvee
\bigwedge \bigvee
\bigwedge \bigvee
\bigwedge \bigvee$

$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}$
Boolean Formulas

\[f(x) = \bigwedge_{i=0}^{10} x_i \]

Input label

Diagram:

- \(i \rightarrow x \rightarrow x_i \)
- \(f(x) \)
- \(\bigwedge \)
- \(x_1, x_2, x_3, x_4 \)
- \(\bigvee \)
- \(x_5, x_6 \)
- \(\bigvee \)
- \(x_7, x_8, x_9, x_{10} \)
Boolean Formulas

Read-once: x_i's not fan out
Boolean Formulas

Read-once: x_i’s not fan out

Read-many: x_i have fan out
Boolean Formula Applications

- Logic
- Designing electrical circuits
- Game theory (deciding who will win a game)
- Combinatorics and graph problems
- Linear programming
- Testing potential solution to an NP-complete problem
Application to Boolean Formulas

\[\land \]: outputs 1 if all input subformulas have value 1

\(s \) and \(t \) are connected if all subgraphs are connected.
Application to Boolean Formulas

AND: outputs 1 if all input subformulas have value 1

s and t are connected if all subgraphs are connected

OR: outputs 1 if any input subformulas have value 1

s and t are connected if any subgraph is connected
Application to Boolean Formulas

\[f(x) = x_1 \land (x_2 \lor x_3 \land x_4) \land (x_5 \lor x_6 \land x_7 \land x_8 \land x_9) \]

Diagram: A tree structure representing the Boolean formula with nodes for variables and logical operators.

Graph: A graph with nodes labeled for variables and edges indicating logical connections.

Sources: [1]
Application to Boolean Formulas

- If we put edges where \(x_i = 1 \), \(s \) and \(t \) are connected iff \(f(x) = 1 \)!

![Diagram showing a tree structure representing Boolean formulas with connected nodes based on the value of \(f(x) \).]
Application to Boolean Formulas

\[f(x) = \bigwedge x_1, x_2, x_3, x_4, \bigvee x_5, x_6, \bigwedge x_7, x_8, x_9, x_{10} \]
Application to Boolean Formulas
Outline:

A. Introduction to Quantum Algorithms and st-connectivity

B. st-connectivity makes a good algorithmic primitive
 1. Applies to a wide range of problems
 • Evaluating Boolean formulas reduces to st-connectivity
 2. Easy to understand (without knowing quantum mechanics)
Effective Resistance

Graph G:

S t
Effective Resistance
Effective Resistance

Valid flow:
- 1 unit in at s
- 1 unit out at t
- At all other nodes, zero net flow
Effective Resistance

Flow energy: \[\sum_{edges} (\text{flow on edge})^2 \]
Effective Resistance

Flow energy: \[\sum_{edges} (\text{flow on edge})^2 \]

Effective Resistance: \(R_{s,t}(G) \)
Smallest energy of any valid flow from \(s \) to \(t \) on \(G \).
Effective Resistance

Flow energy:
\[\sum_{edges} (flow\ on\ edge)^2 \]

Effective Resistance: \(R_{s,t}(G) \)
Smallest energy of any valid flow from \(s \) to \(t \) on \(G \).

Properties of \(R_{s,t}(G) \)
- Small if many short paths from \(s \) to \(t \)
- Large if few long paths from \(s \) to \(t \)
- Infinite if \(s \) and \(t \) not connected
Effective Resistance

1 unit resistors
Effective Resistance

$$R_{s,t}(G) \text{ unit resistor}$$
Effective Capacitance

Graph G':
Effective Capacitance

Valid potential energy:
- 1 at s
- 0 at t
- Potential energy difference is 0 across edge

Graph G':
Effective Capacitance

Valid potential energy:
- 1 at s
- 0 at t
- Potential energy difference is 0 across edge
Effective Capacitance

Cut energy:
\[\sum_{\text{edges}} (\text{Potential Energy Difference})^2 \]

Effective Capacitance: \(C_{s,t}(G') \)
Smallest cut energy of any valid potential energy between \(s \) to \(t \) on \(G' \).
Effective Capacitance

Cut energy:
\[\sum_{\text{edges}} (\text{Potential Energy Difference})^2 \]

Effective Capacitance: \(C_{s,t}(G') \)
Smallest cut energy of any valid potential energy between \(s \) to \(t \) on \(G' \).

Properties of \(C_{s,t}(G') \)
- Small if many small cuts
- Large if one large cuts
- Infinite if \(s \) and \(t \) connected
Effective Capacitance

1 unit capacitors

0 resistance wires (short circuit)
Effective Capacitance

\[C_{s,t}(G') \text{ unit capacitor} \]

1 unit capacitor

0 resistance wires (short circuit)
Algorithm Performance:

st-connectivity algorithm complexity =

\[O\left(\sqrt{\max_{G \in \mathcal{H}: \text{connected}} R_{s,t}(G)} \cdot \sqrt{\max_{G' \in \mathcal{H}: \text{not connected}} C_{s,t}(G')}\right) \]

\[\dagger \text{ with } (s, t) \text{ added also planar} \]
Algorithm Performance:

st-connectivity algorithm complexity =

$$O\left(\sqrt{\max_{G \in \mathcal{H}: \text{connected}} R_{s,t}(G)} \cdot \sqrt{\max_{G' \in \mathcal{H}: \text{not connected}} C_{s,t}(G')}\right)$$

[Belovs, Reichard, ’12] [JJKP, in progress]

† with (s, t) added also planar
Example

What is quantum complexity of deciding $\text{AND}(x_1, x_2, \ldots, x_N)$, promised
- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.
What is quantum complexity of deciding $\text{AND}(x_1, x_2, ..., x_N)$, promised
- All $x_i = 1$, or
- At least \sqrt{N} input variables are 0.

What is quantum complexity of deciding if
- s and t are connected, or
- At least \sqrt{N} edges are missing
What is quantum complexity of deciding if
- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: \text{connected}} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: \text{not connected}} C_{s,t}(G')}$$
Example

What is quantum complexity of deciding if
- \(s \) and \(t \) are connected, or
- At least \(\sqrt{N} \) edges are missing

\[
\sqrt{\max_{G \in H: \text{connected}} R_{s,t}(G)} \cdot \sqrt{\max_{G' \in H: \text{not connected}} C_{s,t}(G')}
\]

\[
\max_{G \in H: \text{connected}} R_{s,t}(G) = N
\]
Example

What is quantum complexity of deciding if
• s and t are connected, or
• At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: \text{connected}} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: \text{not connected}} C_{s,t}(G')}$$
What is quantum complexity of deciding if
• s and t are connected, or
• At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H}: \text{connected}} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H}: \text{not connected}} C_{s,t}(G')}$$
What is quantum complexity of deciding if
- s and t are connected, or
- At least \sqrt{N} edges are missing

$$\sqrt{\max_{G \in \mathcal{H} : \text{connected}} R_{s,t}(G)} \sqrt{\max_{G' \in \mathcal{H} : \text{not connected}} C_{s,t}(G')}$$
What is quantum complexity of deciding if

- \(s \) and \(t \) are connected, or
- At least \(\sqrt{N} \) edges are missing

\[
\begin{align*}
\sqrt{\max_{G \in \mathcal{H} : \text{connected}} R_{s,t}(G)} & \quad \sqrt{\max_{G' \in \mathcal{H} : \text{not connected}} C_{s,t}(G')} \\
\end{align*}
\]

\[
\max_{G' \in \mathcal{H} : \text{not connected}} C_{s,t}(G') = \sqrt{N} \times \left(\frac{1}{\sqrt{N}} \right)^2 = \frac{1}{\sqrt{N}}
\]
What is quantum complexity of deciding if
• s and t are connected, or
• At least \sqrt{N} edges are missing

Quantum complexity is $O(N^{1/4})$
What is quantum complexity of deciding if
• s and t are connected, or
• At least \sqrt{N} edges are missing

Quantum complexity is $O\left(N^{1/4}\right)$

Randomized classical complexity is $\Omega\left(N^{1/2}\right)$
New Example

Connectivity – is every vertex connected to every other vertex?
New Example

Connectivity – is every vertex connected to every other vertex?

Connectivity =
(st – conn) ∧ (su – conn) ∧ (uv – conn) ...

New Example

Connectivity – is every vertex connected to every other vertex?

Connectivity =

\((st - \text{conn}) \land (su - \text{conn}) \land (uv - \text{conn}) \ldots\)
New Example

Connectivity – is every vertex connected to every other vertex?

Results:
- Worst case: $O(n^{3/2})$ ($n = \# \text{ vertices}$)
- Promised
 - YES – diameter is D
 - NO – every connected component has at most n^* vertices
 - $O(\sqrt{nn^*D})$
New Example

Connectivity – is every vertex connected to every other vertex?

Results:
- **Worst case:** $O(n^{3/2})$ ($n = \# \text{ vertices}$)
- Promised
 - YES – diameter is D
 - NO – every connected component has at most n^* vertices
- $O(\sqrt{nn^*D})$

(Diameter result previously discovered by Arins using slightly different approach)
The Algorithm

Span Program
- Span vectors
- Target vector

The input to the problem determines which subset of span vectors are allowed.

If target vector is in span of the allowed span vectors, then function evaluates to 1 on that input. Otherwise, evaluates to 0.

Thus span program encodes a function.

Infinite number of span programs can encode the same function.

Given a span program, can create a quantum algorithm to evaluate the corresponding function (create a quantum walk whose dispersion operators are based on the vectors)
The Algorithm

Span Program
• Span vectors
• Target vector

Given a span program, can create a quantum algorithm to evaluate the corresponding function (create a quantum walk whose dispersion operators are based on the vectors)

The efficiency of the span program is a (relatively) simple function of the vectors.

There is always a span program algorithm that is optimal (and many that are not optimal.)
Open Questions and Current Directions

- When is our algorithm optimal for Boolean formulas? (Especially partial/read-many formulas)
- Are there other problems that reduce to st-connectivity? (Perhaps all?)
- What is the classical time/query complexity of st-connectivity in the black box model? Under the promise of small capacitance/resistance?
- Does our reduction from formulas to connectivity give good classical algorithms too?
- How to choose weights?
Other interests

• Statistical inference and machine learning applied to quantum characterization problems
• Quantum complexity theory, especially quantum versions of NP
Classical Computing

Computer's internal state over time:

- Initial state: 000...000
- Intermediate states: 000...001, 000...010
- Final state: 111...111

Final state encodes solution.
Probabilistic Computing

Each path is weighted by a probability.

Probability of being at a given end state is sum of probabilities of paths that end there.
Quantum Computing

Computer’s internal state

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000...000</td>
<td></td>
</tr>
<tr>
<td>000...001</td>
<td></td>
</tr>
<tr>
<td>000...010</td>
<td></td>
</tr>
<tr>
<td>111...111</td>
<td></td>
</tr>
</tbody>
</table>

Each path is weighted by a complex number.

Probability of being at a given end state is related to sum of weights of paths that end there.

Time
Quantum Computing

Each path is weighted by a complex number. Probability of being at a given end state is related to sum of weights of paths that end there.
Figure of Merit

- **Quantum** Query Complexity
 - Counts number of uses (queries) of the black box *(inputs can be queried in quantum superposition)*
 - All other operations are free
 - Imagine the black box is a hard to compute function, so we want to minimize the number of times we use it.

- **Quantum** Time Complexity
 - Counts the total number of *quantum* operations, including uses of black box.
Figure of Merit

- **Quantum** Query Complexity
 - Counts number of uses (queries) of the black box (**inputs can be queried in quantum superposition**)
 - All other operations are free
 - Imagine the black box is a hard to compute function, so we want to minimize the number of times we use it.

- **Quantum** Time Complexity
 - Counts the total number of **quantum** operations, including uses of black box.

Under a mild assumption, these two will be the same for our algorithm up to a logarithmic factor.
Boolean Formulas

\(\bigwedge \) *AND*: outputs 1 if all inputs are 1

\(\bigvee \) *OR*: outputs 1 if any input is 1

\(x_i \) Value 0 or 1

\[f(x) \]

Diagram:
- \(x_1, x_2, x_3, x_4 \)
- \(x_5, x_6 \)
- \(x_7, x_8, x_9, x_{10} \)

The diagram represents a boolean function with inputs \(x_1 \) to \(x_{10} \) and outputs 1 for all inputs being 1 (AND) and 1 for any input being 1 (OR).
Boolean Formulas

- **AND**: outputs 1 if all inputs are 1
- **OR**: outputs 1 if any input is 1
- **Value**: 0 or 1

The diagram illustrates the function $f(x)$ involving inputs x_i for $i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$. The structure represents how the function is built from AND and OR operations.
Boolean Formulas

\(\bigwedge \): outputs 1 if all inputs are 1

\(\bigvee \): outputs 1 if any input is 1

\(x_1 \) Value 0 or 1

\[f(x) = \bigwedge \bigvee x_2 \bigvee x_5 \bigvee x_6 \bigvee x_7 \bigvee x_8 \bigvee x_9 \]
Boolean Formulas

- **AND**: outputs 1 if all inputs are 1
- **OR**: outputs 1 if any input is 1

Value 0 or 1

\[f(x) = 1 \]