
Path Detection:
A Quantum Computing Primitive

Shelby Kimmel

Middlebury College

Based on work with

Stacey Jeffery: arXiv: 1704.00765 (Quantum vol 1 p 26)

Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, in progress

How to make quantum algorithms accessible?

How to make quantum algorithms accessible?

• Need quantum algorithmic primitives

How to make quantum algorithms accessible?

• Need quantum algorithmic primitives

1. Apply to a wide range of problems

2. Easy to understand and analyze (without knowing

quantum mechanics)

How to make quantum algorithms accessible?

• Need quantum algorithmic primitives

1. Apply to a wide range of problems

2. Easy to understand and analyze (without knowing

quantum mechanics)

– Ex: Searching unordered list of 𝑛 items

– Classically, takes Ω(𝑛) time

– Quantumly, takes 𝑂(𝑛) time

How to make quantum algorithms accessible?

• Need quantum algorithmic primitives

1. Apply to a wide range of problems

2. Easy to understand and analyze (without knowing

quantum mechanics)

– Ex: Searching unordered list of 𝑛 items

– Classically, takes Ω(𝑛) time

– Quantumly, takes 𝑂(𝑛) time

• New primitive: 𝒔𝒕-connectivity

Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

2. Easy to understand (without knowing quantum mechanics)

C. Applications and performance of algorithm

𝑠𝑡-connectivity

𝑠

𝑡

𝒔𝒕 − 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚:
is there a path from 𝑠 to 𝑡?

𝑠𝑡-connectivity

𝑠

𝑡

𝒔𝒕 − 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚:
is there a path from 𝑠 to 𝑡?

Black Box Model

𝑖 𝑒𝑖

Edge

label

• 𝑒𝑖 = 1 if 𝑖𝑡ℎ edge is

there

• 𝑒𝑖 = 0 if edge is not

there

2

4 5

6

7

1

3

𝑠

𝑡Let ℋ be the set of graphs 𝐺 that the

black box might contain.

Figure of Merit

• Query Complexity

– Number of uses (queries) of the black box

– All other operations are free

• Under mild assumption, for our algorithm,

quantum query complexity ≅ quantum time complexity

Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

2. Easy to understand (without knowing quantum mechanics)

C. Applications and performance of algorithm

Outline:

A. Introduction to st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

• Evaluating Boolean formulas reduces to st-connectivity

2. Easy to understand (without knowing quantum mechanics)

C. Applications and performance of algorithm

Boolean Formulas

⋀ 𝐴𝑁𝐷: outputs 1 if all inputs are 1

⋁ 𝑂𝑅: outputs 1 if any input is 1

𝑥𝑖 Value 0 or 1

𝑓(𝑥)

Boolean Formulas
𝑓(𝑥)

𝑖 𝑥𝑖

Input

label

Boolean Formulas
𝑓(𝑥)

Read-once: 𝑥𝑖’s not fan out

Boolean Formulas
𝑓(𝑥)

Read-many: 𝑥𝑖 have fan out

Read-once: 𝑥𝑖’s not fan out

Boolean Formula Applications

• Logic

• Designing electrical circuits

• Game theory (deciding who will win a game)

• Combinatorics and graph problems

• Linear programming

• Testing potential solution to an NP-complete problem

Application to Boolean Formulas

⋀ 𝐴𝑁𝐷: outputs 1 if all input

subformulas have value 1

𝒔

𝒕

𝑠 and 𝑡 are

connected if all

subgraphs are

connected

Application to Boolean Formulas

⋀ ⋁ 𝑂𝑅: outputs 1 if any input

subformulas have value 1

𝒔

𝒕

𝒔

𝒕

𝑠 and 𝑡 are

connected if all

subgraphs are

connected

𝑠 and 𝑡 are

connected if any

subgraph is

connected

𝐴𝑁𝐷: outputs 1 if all input

subformulas have value 1

Application to Boolean Formulas

𝑥10

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝒔

𝒕

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥10

𝑥1 𝑥2 𝑥3 𝑥4

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

𝑓(𝑥)

Application to Boolean Formulas

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥10

𝑥1 𝑥2 𝑥3 𝑥4

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

𝑓(𝑥)

1

0 0 1 0

0 1 0 1 1

• If we put edges where

𝑥𝑖 = 1, 𝑠 and 𝑡 are

connected iff 𝑓 𝑥 = 1!

𝑥10

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝒔

𝒕

Application to Boolean Formulas

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥10

𝑥1 𝑥2 𝑥3 𝑥4

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

𝑓(𝑥)

𝑥10

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝒔

𝒕

Application to Boolean Formulas

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥10

𝑥1 𝑥2 𝑥3 𝑥4

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

𝑓(𝑥)

𝑥10

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝒔

𝒕

Outline:

A. Introduction to Quantum Algorithms and st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

• Evaluating Boolean formulas reduces to st-connectivity

2. Easy to understand (without knowing quantum mechanics)

Effective Resistance

𝑠

𝑡

Graph 𝐺:

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of flow

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of flow

Valid flow:

• 1 unit in at 𝑠
• 1 unit out at 𝑡
• At all other nodes, zero net

flow

1 unit

of flow

1 unit

of flow

𝑓 unit of

flow 1 − 𝑓
unit of

flow

0 unit

of flow

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of flow

Flow energy:

𝑒𝑑𝑔𝑒𝑠

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 2

1 unit

of flow

1 unit

of flow

0 unit

of flow

𝑓 unit of

flow 1 − 𝑓
unit of

flow

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of flow

1 unit

of flow

1 unit

of flow

Flow energy:

𝑒𝑑𝑔𝑒𝑠

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 2

Effective Resistance: 𝑅𝑠,𝑡(𝐺)

Smallest energy of any valid flow from 𝑠
to 𝑡 on 𝐺.

0 unit

of flow

𝑓 unit of

flow 1 − 𝑓
unit of

flow

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of flow

1 unit

of flow

1 unit

of flow

Flow energy:

𝑒𝑑𝑔𝑒𝑠

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 2

Effective Resistance: 𝑅𝑠,𝑡(𝐺)

Smallest energy of any valid flow from 𝑠
to 𝑡 on 𝐺.

Properties of 𝑅𝑠,𝑡(𝐺)
• Small if many short paths from 𝑠 to 𝑡
• Large if few long paths from 𝑠 to 𝑡
• Infinite if 𝑠 and 𝑡 not connected

0 unit

of flow

𝑓 unit of

flow 1 − 𝑓
unit of

flow

Effective Resistance

𝑠

𝑡

1 unit

resistors

Effective Resistance

𝑠

𝑡

𝑠

𝑡

1 unit

resistors

𝑅𝑠,𝑡(𝐺) unit

resistor

Effective Capacitance

𝑠

𝑡

Graph 𝐺′:

Effective Capacitance

𝑠

𝑡

Graph 𝐺′:

Valid potential energy:

• 1 at 𝑠
• 0 at 𝑡
• Potential energy difference

is 0 across edge

Effective Capacitance

𝑠

𝑡

Graph 𝐺′:

Valid potential energy:

• 1 at 𝑠
• 0 at 𝑡
• Potential energy difference

is 0 across edge

1

1 1

0

0

Effective Capacitance

𝑠

𝑡

Graph 𝐺′:
1

1 1

0

0

Cut energy:

𝑒𝑑𝑔𝑒𝑠

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 2

Effective Capacitance: 𝐶𝑠,𝑡(𝐺′)

Smallest cut energy of any valid potential

energy between 𝑠 to 𝑡 on 𝐺’.

Effective Capacitance

𝑠

𝑡

Graph 𝐺′:
1

1 1

0

0

Cut energy:

𝑒𝑑𝑔𝑒𝑠

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 2

Effective Capacitance: 𝐶𝑠,𝑡(𝐺′)

Smallest cut energy of any valid potential

energy between 𝑠 to 𝑡 on 𝐺’.

Properties of 𝐶𝑠,𝑡(𝐺
′)

• Small if many small cuts

• Large if one large cuts

• Infinite if 𝑠 and 𝑡 connected

Effective Capacitance

𝑠

𝑡

1 unit

capacitors

0 resistance

wires (short

circuit)

Effective Capacitance

𝑠

𝑡

1 unit

capacitors

0 resistance

wires

𝑠

𝑡

𝐶𝑠,𝑡(𝐺′) unit

capacitor

0 resistance

wires (short

circuit)

Algorithm Performance:

st-connectivity algorithm complexity =

† with 𝑠, 𝑡 added also planar

Algorithm Performance:

st-connectivity algorithm complexity =

† with 𝑠, 𝑡 added also planar

[Belovs, Reichard, ’12] [JJKP, in progress]

Example

What is quantum complexity of deciding

𝐴𝑁𝐷 𝑥1, 𝑥2,… , 𝑥𝑁 , promised

• All 𝑥𝑖 = 1, or

• At least 𝑁 input variables are 0.

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding

𝐴𝑁𝐷 𝑥1, 𝑥2,… , 𝑥𝑁 , promised

• All 𝑥𝑖 = 1, or

• At least 𝑁 input variables are 0.

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡 𝐺 = 𝑁

1 unit

of flow

1 unit

of flow

1 unit

of flow

1 unit

of flow

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

1

0

0

1 −
1

𝑁

1

𝑁

Example

𝑠

𝑁

𝑡

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝐶𝑠,𝑡(𝐺′)

1

0

0

1 −
1

𝑁

1

𝑁
max

𝐺′∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
𝐶𝑠,𝑡 𝐺

′ = 𝑁 ×
1

𝑁

2

=
1

𝑁

Example

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

Quantum complexity is 𝑂 𝑁1/4

1/ 𝑁𝑁

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠′,𝑡′(𝐺′)

𝑠

𝑡

Example

What is quantum complexity of deciding if

• 𝑠 and 𝑡 are connected, or

• At least 𝑁 edges are missing

Quantum complexity is 𝑂 𝑁1/4

1/ 𝑁𝑁

Randomized classical complexity is Ω 𝑁1/2

max
𝐺∈ℋ:𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠,𝑡(𝐺) max
𝐺∈ℋ:𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑅𝑠′,𝑡′(𝐺′)

𝑠

𝑡

New Example

Connectivity – is every vertex

connected to every other vertex?

2

4 5

6

7

1

3

𝑠

𝑡

New Example

2

4 5

6

7

1

3

𝑠

𝑡

Connectivity – is every vertex

connected to every other vertex?

Connectivity=

𝑠𝑡 − 𝑐𝑜𝑛𝑛 ∧ 𝑠𝑢 − 𝑐𝑜𝑛𝑛 ∧ 𝑢𝑣 − 𝑐𝑜𝑛𝑛 …

New Example 2

4 5

6

7

1
3

𝑠

𝑡

Connectivity – is every vertex

connected to every other vertex?

Connectivity=

𝑠𝑡 − 𝑐𝑜𝑛𝑛 ∧ 𝑠𝑢 − 𝑐𝑜𝑛𝑛 ∧ 𝑢𝑣 − 𝑐𝑜𝑛𝑛 …

New Example 2

4 5

6

7

1
3

𝑠

𝑡

Connectivity – is every vertex

connected to every other vertex?

Results:

• Worst case: 𝑂(𝑛3/2) (𝑛 = # vertices)

• Promised

• YES – diameter is 𝐷
• NO – every connected component

has at most 𝑛∗ vertices

• 𝑂 𝑛𝑛∗𝐷

New Example 2

4 5

6

7

1
3

𝑠

𝑡

Connectivity – is every vertex

connected to every other vertex?

Results:

• Worst case: 𝑂(𝑛3/2) (𝑛 = # vertices)

• Promised

• YES – diameter is 𝐷
• NO – every connected component

has at most 𝑛∗ vertices

• 𝑂 𝑛𝑛∗𝐷

(Diameter result previously discovered by

Arins using slightly different approach)

The Algorithm

Span Program

• Span vectors

• Target vector

The input to the problem determines which subset of span vectors are

allowed.

If target vector is in span of the allowed span vectors, then function evaluates

to 1 on that input. Otherwise, evaluates to 0.

Thus span program encodes a function.

Infinite number of span programs can encode the same function

Given a span program, can create a quantum algorithm to evaluate the

corresponding function (create a quantum walk whose dispersion operators

are based on the vectors)

The Algorithm

Span Program

• Span vectors

• Target vector

Given a span program, can create a quantum algorithm to evaluate the

corresponding function (create a quantum walk whose dispersion operators

are based on the vectors)

The efficiency of the span program is a (relatively) simple function of the

vectors.

There is always a span program algorithm that is optimal (and many that are

not optimal.)

Open Questions and Current Directions

• When is our algorithm optimal for Boolean formulas? (Especially

partial/read-many formulas)

• Are there other problems that reduce to st-connectivity? (Perhaps

all?)

• What is the classical time/query complexity of st-connectivity in the

black box model? Under the promise of small capacitance/resistance?

• Does our reduction from formulas to connectivity give good classical

algorithms too?

• How to choose weights?

Other interests

• Statistical inference and machine learning applied to quantum

characterization problems

• Quantum complexity theory, especially quantum versions of NP

Classical Computing

000…000
000…001
000…010

111…111

timeComputer’s

internal state

Final state

encodes solution

Probabilistic Computing

000…000
000…001
000…010

111…111

Each path is weighted

by a probability

Probability of being at a

given end state is sum of

probabilities of paths that

end there

timeComputer’s

internal state

Quantum Computing

000…000
000…001
000…010

111…111

Each path is weighted

by a complex number

Probability of being at a

given end state is related

to sum of weights of

paths that end there

timeComputer’s

internal state

Quantum Computing

000…000
000…001
000…010

111…111

Each path is weighted

by a complex number

Probability of being at a

given end state is related

to sum of weights of

paths that end there

timeComputer’s

internal state

−1

1

Figure of Merit

• Quantum Query Complexity

– Counts number of uses (queries) of the black box (inputs can

be queried in quantum superposition)

– All other operations are free

– Imagine the black box is a hard to compute function, so we want

to minimize the number of times we use it.

• Quantum Time Complexity

– Counts the total number of quantum operations, including uses

of black box.

Figure of Merit

• Quantum Query Complexity

– Counts number of uses (queries) of the black box (inputs can

be queried in quantum superposition)

– All other operations are free

– Imagine the black box is a hard to compute function, so we want

to minimize the number of times we use it.

• Quantum Time Complexity

– Counts the total number of quantum operations, including uses

of black box.

Under a mild assumption, these two will be the same for our algorithm up

to a logarithmic factor.

Boolean Formulas

⋀ 𝐴𝑁𝐷: outputs 1 if all inputs are 1

⋁ 𝑂𝑅: outputs 1 if any input is 1

𝑥𝑖 Value 0 or 1

𝑓(𝑥)

Boolean Formulas

⋀ 𝐴𝑁𝐷: outputs 1 if all inputs are 1

⋁ 𝑂𝑅: outputs 1 if any input is 1

𝑥𝑖 Value 0 or 1

𝑓(𝑥)

0

Boolean Formulas

⋀ 𝐴𝑁𝐷: outputs 1 if all inputs are 1

⋁ 𝑂𝑅: outputs 1 if any input is 1

𝑥1 Value 0 or 1

𝑓(𝑥)

0
1

1

Boolean Formulas

⋀ 𝐴𝑁𝐷: outputs 1 if all inputs are 1

⋁ 𝑂𝑅: outputs 1 if any input is 1

𝑥1 Value 0 or 1

𝑓 𝑥 = 1

0
1

1

