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• Need quantum algorithmic primitives

1. Apply to a wide range of problems

2. Easy to understand and analyze (without knowing 

quantum mechanics)

– Ex: Searching unordered list of 𝑛 items

– Classically, takes Ω(𝑛) time

– Quantumly, takes 𝑂( 𝑛) time

• New primitive: 𝒔𝒕-connectivity
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C. Applications and performance of algorithm
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Black Box Model

𝑖 𝑒𝑖

Edge 

label

• 𝑒𝑖 = 1 if 𝑖𝑡ℎ edge is 

there

• 𝑒𝑖 = 0 if edge is not 

there
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𝑠

𝑡Let ℋ be the set of graphs 𝐺 that the 

black box might contain.



Figure of Merit

• Query Complexity

– Number of uses (queries) of the black box

– All other operations are free

• Under mild assumption, for our algorithm, 

quantum query complexity ≅ quantum time complexity 
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Boolean Formulas

⋀ 𝐴𝑁𝐷: outputs 1 if all inputs are 1

⋁ 𝑂𝑅: outputs 1 if any input is 1

𝑥𝑖 Value 0 or 1
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Boolean Formulas
𝑓(𝑥)

Read-many: 𝑥𝑖 have fan out

Read-once: 𝑥𝑖’s not fan out



Boolean Formula Applications

• Logic

• Designing electrical circuits

• Game theory (deciding who will win a game)

• Combinatorics and graph problems

• Linear programming

• Testing potential solution to an NP-complete problem
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Outline:

A. Introduction to Quantum Algorithms and st-connectivity

B. st-connectivity makes a good algorithmic primitive

1. Applies to a wide range of problems

• Evaluating Boolean formulas reduces to st-connectivity

2. Easy to understand (without knowing quantum mechanics)
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• 1 unit in at 𝑠
• 1 unit out at 𝑡
• At all other nodes, zero net 
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𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 2

Effective Resistance: 𝑅𝑠,𝑡(𝐺)

Smallest energy of any valid flow from 𝑠
to 𝑡 on 𝐺.

Properties of 𝑅𝑠,𝑡(𝐺)
• Small if many short paths from 𝑠 to 𝑡
• Large if few long paths from 𝑠 to 𝑡
• Infinite if 𝑠 and 𝑡 not connected
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𝑠
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Valid potential energy:

• 1 at 𝑠
• 0 at 𝑡
• Potential energy difference 

is 0 across edge
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Effective Capacitance
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Effective Capacitance: 𝐶𝑠,𝑡(𝐺′)

Smallest cut energy of any valid potential 

energy between 𝑠 to 𝑡 on 𝐺’.

Properties of 𝐶𝑠,𝑡(𝐺
′)

• Small if many small cuts 

• Large if one large cuts

• Infinite if 𝑠 and 𝑡 connected
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𝑠

𝑡

𝐶𝑠,𝑡(𝐺′) unit 
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wires (short 

circuit)



Algorithm Performance:

st-connectivity algorithm complexity = 

† with 𝑠, 𝑡 added also planar



Algorithm Performance:

st-connectivity algorithm complexity = 

† with 𝑠, 𝑡 added also planar

[Belovs, Reichard, ’12] [JJKP, in progress]
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• All 𝑥𝑖 = 1, or

• At least 𝑁 input variables are 0.
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Example 

What is quantum complexity of deciding if 

• 𝑠 and 𝑡 are connected, or 

• At least 𝑁 edges are missing

Quantum complexity is 𝑂 𝑁1/4

1/ 𝑁𝑁
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Example 

What is quantum complexity of deciding if 

• 𝑠 and 𝑡 are connected, or 

• At least 𝑁 edges are missing

Quantum complexity is 𝑂 𝑁1/4

1/ 𝑁𝑁

Randomized classical complexity is Ω 𝑁1/2
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Results:

• Worst case: 𝑂(𝑛3/2) (𝑛 = # vertices)

• Promised

• YES – diameter is 𝐷
• NO – every connected component 

has at most 𝑛∗ vertices

• 𝑂 𝑛𝑛∗𝐷
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𝑠

𝑡

Connectivity – is every vertex 

connected to every other vertex?

Results:

• Worst case: 𝑂(𝑛3/2) (𝑛 = # vertices)

• Promised

• YES – diameter is 𝐷
• NO – every connected component 

has at most 𝑛∗ vertices

• 𝑂 𝑛𝑛∗𝐷

(Diameter result previously discovered by 

Arins using slightly different approach)



The Algorithm

Span Program

• Span vectors

• Target vector

The input to the problem determines which subset of span vectors are 

allowed. 

If target vector is in span of the allowed span vectors, then function evaluates 

to 1 on that input. Otherwise, evaluates to 0.

Thus span program encodes a function.

Infinite number of span programs can encode the same function

Given a span program, can create a quantum algorithm to evaluate the 

corresponding function (create a quantum walk whose dispersion operators 

are based on the vectors)



The Algorithm

Span Program

• Span vectors

• Target vector

Given a span program, can create a quantum algorithm to evaluate the 

corresponding function (create a quantum walk whose dispersion operators 

are based on the vectors)

The efficiency of the span program is a (relatively) simple function of the 

vectors.

There is always a span program algorithm that is optimal (and many that are 

not optimal.)



Open Questions and Current Directions

• When is our algorithm optimal for Boolean formulas? (Especially 

partial/read-many formulas)

• Are there other problems that reduce to st-connectivity? (Perhaps 

all?)

• What is the classical time/query complexity of st-connectivity in the 

black box model? Under the promise of small capacitance/resistance?

• Does our reduction from formulas to connectivity give good classical 

algorithms too?

• How to choose weights?



Other interests

• Statistical inference and machine learning applied to quantum 

characterization problems

• Quantum complexity theory, especially quantum versions of NP
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by a complex number
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to sum of weights of 

paths that end there
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internal state

−1
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Figure of Merit

• Quantum Query Complexity

– Counts number of uses (queries) of the black box (inputs can 

be queried in quantum superposition)

– All other operations are free

– Imagine the black box is a hard to compute function, so we want 

to minimize the number of times we use it.

• Quantum Time Complexity

– Counts the total number of quantum operations, including uses 

of black box.



Figure of Merit

• Quantum Query Complexity

– Counts number of uses (queries) of the black box (inputs can 

be queried in quantum superposition)

– All other operations are free

– Imagine the black box is a hard to compute function, so we want 

to minimize the number of times we use it.

• Quantum Time Complexity

– Counts the total number of quantum operations, including uses 

of black box.

Under a mild assumption, these two will be the same for our algorithm up 

to a logarithmic factor.
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