
Speed-ups for Quantum
Algorithms with Easier Inputs

Shelby Kimmel, Jay-U Chung, Noel Anderson
Middlebury College

• Noel Anderson, SK, and Jay-U Chung arXiv:2012.01276
• Kai DeLorenzo, SK, Teal Witter, arXiv:1904.05995 (TQC 2019)
• Michael Jarret, Stacey Jeffery, SK, Alvaro Piedrafita, arXiv:1804.10591 (ESA 2018)
• Stacey Jeffery, SK: arXiv:1704.00765 (Quantum vol 1 p 26)

Easy vs Hard Instances

ENTRANCE

ENTRANCE

EXIT

EXIT

Path-Detection:

Easier:Harder:

Easy vs Hard Instances: Classically
Ex: Path-Detection
Run search from ENTRANCE for time T (based on size of maze).
• If find EXIT, stop and output YES, otherwise continue
• If after time T don’t find EXIT, output NO

Easy vs Hard Instances: Classically
Ex: Path-Detection
Run search from ENTRANCE for time T (based on size of maze).
• If find EXIT, stop and output YES, otherwise continue
• If after time T don’t find EXIT, output NO

If easier: shorter run time
If harder: longer run time

Easy vs Hard Instances: Classically
Ex: Path-Detection
Run search from ENTRANCE for time T (based on size of maze).
• If find EXIT, stop and output YES, otherwise continue
• If after time T don’t find EXIT, output NO

If easier: shorter run time
If harder: longer run time

Key properties:
1. Can check status mid-algorithm and continue running
2. Witness of completion (if find EXIT, convinced there is a path)

Easy vs Hard Instances: Quantumly

Key properties:
1. Can check status mid-algorithm and continue running
2. Witness of completion (if find EXIT, convinced there is a path)

If easier: shorter run time
If harder: longer run time

Run search from ENTRANCE for time T (based on size of maze).
• If find EXIT, stop and output YES, otherwise continue
• If after time T don’t find EXIT, output NO

Our Result

For a large class of quantum algorithms that previously used worst-case complexity
for all instances:

Our Result

For a large class of quantum algorithms that previously used worst-case complexity
for all instances:

Create a modified algorithm:
• If hard instance:

Our Result

For a large class of quantum algorithms that previously used worst-case complexity
for all instances:

Create a modified algorithm:
• If hard instance: (approximately) previous worst-case complexity

Our Result

For a large class of quantum algorithms that previously used worst-case complexity
for all instances:

Create a modified algorithm:
• If hard instance: (approximately) previous worst-case complexity
• If easier instance:

Our Result

For a large class of quantum algorithms that previously used worst-case complexity
for all instances:

Create a modified algorithm:
• If hard instance: (approximately) previous worst-case complexity
• If easier instance: better complexity

Talk Outline
1. Oracle Model
2. Challenges:

a. No check and continue
b. No (easily accessible) witness of completion

3. Applications & Future Work

Oracle Model

1

2

3

4

5
6

7

8

START

END

𝑂!7 ?

Oracle Model

1

2

3

4

6

7

8

START

END

𝑂!7 1

5

Oracle Model

1

2

3

4

6

7

8

START

END

𝑂!3 ?

5

Oracle Model

1

2

3

4

6

7

8

START

END

𝑂!3 0

5

Oracle Model

1

2

3

4

6

7

8

START

END

𝑂!3 0

5
Goal: to solve our
problem while querying
as few times as possible

Quantum Oracle Model

𝑂!

Problem:
• Algorithm for 𝑓: 𝑋 → {0,1} (e.g. is there a path?)

Input
𝑂! for instance 𝑥 ∈ 𝑋
(e.g. edge positions)

Output:
𝑓(𝑥), using as few queries as possible
• in worst case over 𝑋
• while using fewer queries on easier

instances

of queries – “runtime” – query complexity

𝑖 |0⟩ 𝑖 |𝑥!⟩

Talk Outline
1. Oracle Model
2. Challenges:

a. No check and continue
b. No (easily accessible) witness of completion

3. Applications & Future Work

Easy
Harder

Quantum If/Else?
Classically: Easy

Quantum If/Else?
Classically: Easy

Quantumly:
• if/else → measurement
• Measurement → collapse
• Collapse → computation ruined

Quantum If/Else?

Time until
measurement

Iteration

2
4

8

𝑇

1 2 3 log 𝑇

⋯

⋯

Worst case runtime

Quantum If/Else?

2
4

8

𝑇

1 2 3 log 𝑇

⋯

⋯

Total Runtime:
𝑂 𝑇

(Geometric series)

Iteration

Time until
measurement

Worst case runtime

Quantum If/Else?

2
4

8

𝑇

1 2 3 log 𝑇

⋯

⋯

Total Runtime:
𝑂 𝑇

(Geometric series)

Runtime with Error
Reduction:

3𝑂 𝑇

Iteration

Time until
measurement

Worst case runtime

Talk Outline
1. Oracle Model
2. Challenges:

a. No check and continue
b. No (easily accessible) witness of completion

3. Applications & Future Work

Easy
Harder

Our Result

For a large class of quantum algorithms that previously used worst-case runtime for
all instances:

Span program algorithms

Create a modified algorithm:
• If worst-case instance: (approximately) previous worst case run time
• If easier instance: shorter run time

Span Program Algorithms

∀ Boolean function, ∃ span program algorithm:
• Query optimal for worst-case inputs

Reichardt 2009 FOCS, Reichardt 2011 SODA

Span Program Algorithms

∀ Boolean function, ∃ span program algorithm:
• Query optimal for worst-case inputs
• Not known how to get a speed-up for easier instances

Reichardt 2009 FOCS, Reichardt 2011 SODA

Span Program Algorithms

∀ Boolean function, ∃ span program algorithm:
• Query optimal for worst-case inputs
• Not known how to get a speed-up for easier instances*

*If don’t know ahead of time that instance is easy

Reichardt 2009 FOCS, Reichardt 2011 SODA

Span Program Algorithms

∀ Boolean function, ∃ span program algorithm:
• Query optimal for worst-case inputs
• Not known how to get a speed-up for easier instances*

*If don’t know ahead of time that instance is easy

Key subroutine: Phase estimation

Reichardt 2009 FOCS, Reichardt 2011 SODA

Phase Estimation

0
1/𝜃

2𝜋⋯

2/𝜃
3/𝜃
4/𝜃Phase

𝜆

5/𝜃

𝑈 𝜓 = 𝑒"# 𝜓

Phase Estimation

0
1/𝜃

⋯

2/𝜃
3/𝜃
4/𝜃

0
1/𝜃

⋯
2/𝜃
3/𝜃
4/𝜃Phase

𝜆

5/𝜃 5/𝜃

Phase Estimation
Outcome Probability𝑈 𝜓 = 𝑒"# 𝜓

2𝜋 2𝜋

Phase Estimation

0
1/𝜃

⋯

2/𝜃
3/𝜃
4/𝜃

0
1/𝜃

⋯
2/𝜃
3/𝜃
4/𝜃Phase

𝜆

5/𝜃 5/𝜃

Phase Estimation
Outcome Probability𝑈 𝜓 = 𝑒"# 𝜓

Larger 𝜃 More
queries

2𝜋 2𝜋

Phase Estimation for Span Programs

Phase estimation in span program algorithm
• If 𝑓 𝑥 = 𝑌𝐸𝑆,
• Output phase = 0 w.h.p

• If 𝑓 𝑥 = 𝑁𝑂
• Output phase ≠ 0 w.h.p

Phase Estimation for Span Programs

Phase estimation in span program algorithm
• If 𝑓 𝑥 = 𝑌𝐸𝑆,
• Output phase = 0 w.h.p

• If 𝑓 𝑥 = 𝑁𝑂
• Output phase ≠ 0 w.h.p

Strategy: Reduce precision

Reduce Precision (𝜃)

𝜆

Phase

Case 1:
• YES

OK!

𝜓 Eigenphase
Phase estimation
Outcome Probability

0

1/𝜃′

2/𝜃′

1/𝜃′

2/𝜃′

0

⋯ ⋯2𝜋 2𝜋

Reduce Precision (𝜃)

⋯ ⋯
Phase

Phase estimation
Outcome Probability

Case 2:
• HARD NO 𝜓 Eigenphase

𝜆
0

1/𝜃′

2/𝜃′

1/𝜃′

2/𝜃′

0

2𝜋 2𝜋

2𝜋 2𝜋

𝜓 Eigenphase

Reduce Precision (𝜃)

⋯ ⋯
Phase

𝜋

Phase estimation
Outcome Probability

Case 2:
• HARD NO

0

1/𝜃′

2/𝜃′ 2/𝜃′

Low precision, output 0
→

unable to distinguish YES/NO

1/𝜃′

𝜆
0

Reduce Precision (𝜃)

Eigenstate as witness?
Upcoming work

2𝜋 2𝜋

𝜓 Eigenphase

Reduce Precision (𝜃)

⋯ ⋯
Phase

𝜋

Phase estimation
Outcome Probability

Case 2:
• HARD NO

0

1/𝜃′

2/𝜃′ 2/𝜃′

Low precision, output 0
→

unable to distinguish YES/NO

1/𝜃′

𝜆
0

Reduce Precision (𝜃)

⋯ ⋯
Phase

Phase estimation
Outcome Probability

Case 3:
• Easy NO

0

1/𝜃′

2/𝜃′

0

1/𝜃′

2/𝜃′
𝜆

𝜓 Eigenphase

2𝜋 2𝜋

2𝜋 2𝜋

𝜓 Eigenphase

Reduce Precision (𝜃)

⋯ ⋯
Phase

𝜋

Phase estimation
Outcome Probability

Case 3:
• Easy NO

0

1/𝜃′

2/𝜃′

0

1/𝜃′

2/𝜃′
𝜆

Low precision, output ≠0
→

Confident NO

Reduce Precision (𝜃)

• Run span program phase estimation with exponentially increasing
precision 𝜃. Each iteration:
Ø If 0 output, continue
Ø If non-0 output, stop and output NO

Result: faster runtime for easy NO instances

Easy Yes Instances?

Design negated span program to exchange YES/NO instances

Result: Easy YES instance → easy NO instance

All Together

With exponentially increasing precision:
• Span program phase estimation

Ø If non-0 phase, stop and output NO
• Negated span program phase estimation

Ø If non-0 phase, stop and output YES

Result:
• faster for easy YES and NO instances
• Worst-case increases by only log factor (geometric scaling)

All Together

With exponentially increasing precision:
• Span program phase estimation

Ø If non-0 phase, stop and output NO
• Negated span program phase estimation

Ø If non-0 phase, stop and output YES

Result:
• faster for easy YES and NO instances
• Worst-case increases by only log factor (geometric scaling)

*Not exactly our algorithm :D

Performance
In span program, each instance 𝑥 ∈ 𝑋 has witness size 𝑤 𝑥 .

Original span program algorithm query complexity:

𝑂 max
!∈%:' ! ()*+

𝑤 𝑥 max
!∈%∶' ! (-.

𝑤 𝑥

Performance
In span program, each instance 𝑥 ∈ 𝑋 has witness size 𝑤 𝑥 .

Original span program algorithm query complexity:

𝑂 max
!∈%:' ! ()*+

𝑤 𝑥 max
!∈%∶' ! (-.

𝑤 𝑥

If promised that only have YES instances with 𝑤 𝑥 ≤ 𝑤

𝑂 𝑤 max
!∈%∶' ! (-.

𝑤 𝑥

Performance
In span program, each instance 𝑥 ∈ 𝑋 has witness size 𝑤 𝑥 .

Original span program algorithm query complexity:

𝑂 max
!∈%:' ! ()*+

𝑤 𝑥 max
!∈%∶' ! (-.

𝑤 𝑥

Our query complexity (no promise):
• If input instance 𝑥′ is YES:

3𝑂 𝑤(𝑥/) max
!∈%∶' ! (-.

𝑤 𝑥

• If input instance 𝑥/ is NO

3𝑂 𝑤(𝑥/) max
!∈%∶' ! ()*+

𝑤 𝑥

Talk Outline
1. Oracle Model
2. Challenges:

a. No check and continue
b. No (easily accessible) witness of completion

3. Applications & Future Work

Easy
Harder

Path Detection

𝑡

𝑠

1 2
3

Path Detection

𝑡

𝑠

2
3

For each instance, calculate
• effective resistance (if path)

𝑥 = 011
1

𝑤 𝑥 = 1/2

Path Detection

𝑡

𝑠

For each instance, calculate
• effective resistance (if path)

2
3

1
𝑥 = 001

𝑤 𝑥 = 1

Path Detection

𝑡

𝑠

For each instance, calculate
• effective resistance (if path)
• effective capacitance (if cut)

𝑥 = 000

𝑤 𝑥 = 3 2
3

1

• Jarret, Jeffery, SK, Piedrafita, (ESA 2018)
• Reichard and Belovs, ESA 2012

Path Detection Applications

Grover’s search!

𝑡

𝑠

2
𝑛

1 …

Path Detection Applications

Grover’s search!

𝑚 edges →𝑤 𝑥 = 1/𝑚
0 edges →𝑤 𝑥 = 𝑛

𝑡

𝑠

2
𝑛

1 …

If input instance 𝑥′ is YES:

3𝑂 𝑤(𝑥/) max
!∈%∶' ! (-.

𝑤 𝑥

Path Detection Applications

𝑡

𝑠

2
𝑛

1 …

Grover’s search!

With our algorithm: if 𝑚 of 𝑛 items are
marked, can solve in

3𝑂 0
1

queries without knowing 𝑚 ahead of
time

Matches: Boyer, Brassard, Hoyer, Tapp [1998] (Highly search specific)
Up to log factors: Yoder, Low, Chuang [2014] (Highly search specific)

Path Detection Applications

Cycle finding!

Can detect whether a cycle is present in
3𝑂 0!/#

2 where 𝑐 is number of cycles,
without knowing 𝑐 ahead of time.

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5

1

1

2

3

4

5
1

2

3

5

4

1

2 35

4

• DeLorenzo, SK, Witter, arXiv:1904.05995 (TQC 2019)

Path Detection Applications

Formula Evaluation

𝑥:;

𝑥:

𝑥<

𝑥=

𝑥>

𝑥?

¬𝑥@
𝑥A

𝑥B

𝒔

𝒕

𝑥: ∧ 𝑥< ∨ ¬𝑥C ∧ 𝑥= ∨ 𝑥> ∨ 𝑥? ∧ ¬𝑥@ ∨ 𝑥A ∨ 𝑥B ∧ 𝑥:;

Connection between easier formula
instances and small effective resistance?

¬𝑥C

• Jeffery, SK: arXiv:1704.00765 (Quantum vol 1 p 26)

State generation extension
State Generation Problem:
Convert |𝜌!⟩ to |𝜎!⟩ given access to 𝑂!.

There is a span program-like algorithm that is nearly optimal for worst-case 𝑥.
Running faster on easier inputs?

Challenge:
Original algorithm has no measurements!

Our Result:
Use an auxiliary test to determine when can stop running.

Future/Current Work

• Opportunities for average case quantum vs. classical algorithms
• Best classical algorithm on graphs with small effective resistance

• Get rid of log factors from error suppression? (Fixed-point methods)
• Generate witness states

Thank you!

Jay-U
Chung

Noel
Anderson

Stacey
Jeffery

Teal
Witter

Kai De
LorenzoMichael

Jarret

Alvaro
Piedrafita

