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Easy vs Hard Instances: Quantumly
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e If worst-case instance: (approximately) previous worst case run time
* If easier instance: shorter run time
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Quantum Oracle Model

Given:

* Description of a Boolean function f mmmmm) Design an quantum

* Set X of possible instances algorithm to decide any
instance in X

Input Output:

0, for specific instance x € X f(x), using as few queries as

possible
...in worst case

_ . ...while using fewer queries on
[0)]0) m—p Ox m [0)|x;) easier instances

# of queries — “runtime” — query
complexity
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If ... Continue

Classically: Can check property of algorithm and then continue running

Quantumly: to check property, need to measure
* Measurement — collapse
 Can’t continue
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High Level Problem: Witness is a Hard to
Characterize Quantum State
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High Level Problem: Witness is a Hard to
Characterize Quantum State

. False positive

No Instance, not run long enough: |YES)|unconvincing witness)

|lunconvincing witness) = |1) — |3) + |6) — |8)

START

END
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Our Result

Span program algorithms

e

For a large class of quantum algorithms that previously used worst-case runtime for
all instances:

Create a modified algorithm:
e If worst-case instance: (approximately) previous worst case run time
* If easier instance: shorter run time



Span Program Algorithms

—

2 ,4 mm) Quantum Query
S algorithm for f on

Encodes f on domain X domain X

V functions, 3 span program:
* Query optimal for worst-case (hardest) inputs
* Not known how to get a speed-up for easier instances*

*If don’t know ahead of time that instance is easy

(See Reichardt 2010 https://arxiv.org/pdf/1005.1601.pdf)



https://arxiv.org/pdf/1005.1601.pdf

Phase Estimation

Key procedure for span program algorithm
Input:

 Unitary U

* Eigenstate |Y), st U[yY) = e?™4|y)

* Precision 8

Output: |A| (approximation of || to precision 6),

(See Reichardt 2010 https://arxiv.org/pdf/1005.1601.pdf for 3 different algorithms!)
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Phase Estimation for Span Programs

Span program for f on X — 3 unitary U (created using 0,.), state |) s.t.Vx € X:
* If f(x) =YES,

e Qutput phaseis 0 w.h.p
 Iff(x) =NO

* Qutput phase is not 0 w.h.p, if use large enough 6 (precision)

Larger 6 | mmmmm | lONBET

runtime




Reduce Precision (0)

Case O: Phase estimation

e YES INSTANCE 1) Eigenphase Outcome Probability

* Any precision I r >
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Reduce Precision (0)

Case 3:
* EasyNO
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Phase
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Reduce Precision (0)

* Run span program phase estimation algorithm with exponentially
increasing precision @ until reach precision of original algorithm
» If get 0 phase at any repetition, continue
» If get non-0 phase at any repetition, stop and output NO

Result: faster runtime for easy NO instances



Easy Yes Instances?

Design negation procedure to produce a span program where YES/NO
instances are exchanged.

Result: Formerly easy YES instances become easy NO instance
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* Span program phase estimation algorithm

> If get non-0 phase at any repetition, stop and output NO
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* faster runtime for easy YES and NO instances
 Geometric scaling increases worst-case runtime by only log factor



All Together

Run with exponentially increasing precision:
* Span program phase estimation algorithm

> If get non-0 phase at any repetition, stop and output NO
* Negated span program phase estimation algorithm

» If get non-0 phase at any repetition, stop and output YES

Result:

* faster runtime for easy YES and NO instances
 Geometric scaling increases worst-case runtime by only log factor

*Not exactly our algorithm :D
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Original span program algorithm query complexity:
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Our query complexity:
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Applications

Frequently: witness size w(x) is related to natural difficulty measures
* For path detection
* YES: w(x) < length of shortest path
 NO: w(x) < size of smallest cut
* For total connectivity
* YES: w(x) < average effective resistance Harret, Jeffery, SK, Piedrafita "19]
* NO: w(x) < 1/(number of components)
* For cycle finding
* YES: w(x) =1/(cycle rank) [Delorenzo, SK, Witter "20]
« NO: w(x) < no. of edges
* For search
* YES: w(x) = no. of marked items

[Belovs and Reichardt ‘12, Jarret,
Jeffery, SK, Piedrafita '19]



State generation extension

State Generation Problem:
Convert |p,) to |o,) given access to O,.

There is a span program-like algorithm that is nearly optimal for worst-case x.
Running faster on easier inputs?

Challenge:
Original algorithm has no measurements!

Our Result:
Use an auxiliary test to determine when can stop running.



Future Work

* Get rid of log factors from error suppression? (Fixed-point methods)
 Opportunities for average case quantum vs. classical speed-ups

* Faster algorithms for producing witness states for easy instances

* Better error parameters for state generation

 Use these ideas to speed up non-span program algorithms on easy
inputs

https://arxiv.org/pdf/2012.01276.pdf



Thank youl!

Noel
Anderson




