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Create a modified algorithm:
• If worst-case instance: (approximately) previous worst case run time
• If easier instance: shorter run time
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Oracle Model

𝑂!

Given:
• Description of a Boolean function 𝑓
• Set 𝑋 of possible instances

Input
𝑂! for specific instance 𝑥 ∈ 𝑋

𝑖 𝑥!

Output:
𝑓(𝑥), using as few queries 
as possible
…in worst case
…while using fewer queries 
on easier instances

Design an algorithm to 
decide any instance in 𝑋
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Quantum Oracle Model

𝑂!

Given:
• Description of a Boolean function 𝑓
• Set 𝑋 of possible instances

Input
𝑂! for specific instance 𝑥 ∈ 𝑋

Output:
𝑓(𝑥), using as few queries as 
possible
…in worst case
…while using fewer queries on 
easier instances

# of queries – “runtime” – query 
complexity

Design an quantum 
algorithm to decide any 
instance in 𝑋

𝑖 |0⟩ 𝑖 |𝑥!⟩
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If … Continue



If … Continue
Classically: Can check property of algorithm and then continue running

Quantumly: to check property, need to measure
• Measurement → collapse
• Can’t continue
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High Level Problem: Witness is a Hard to 
Characterize Quantum State
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Talk Outline
1. Oracle Model
2. Challenges:

a. Can’t check property of algorithm and then continue running
i. Why challenge exists quantumly
ii. How to overcome

b. (Frequently) No (easily accessible) witness of completion
i. Why challenge exists quantumly
ii. How to overcome – avoid dealing with witness states
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Our Result

For a large class of quantum algorithms that previously used worst-case runtime for 
all instances:

Span program algorithms

Create a modified algorithm:
• If worst-case instance: (approximately) previous worst case run time
• If easier instance: shorter run time



Span Program Algorithms

∀ functions, ∃ span program: 
• Query optimal for worst-case (hardest) inputs
• Not known how to get a speed-up for easier instances* 

*If don’t know ahead of time that instance is easy
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⋯

Encodes 𝑓 on domain 𝑋

Quantum Query 
algorithm for 𝑓 on 
domain 𝑋

(See Reichardt 2010 https://arxiv.org/pdf/1005.1601.pdf)

https://arxiv.org/pdf/1005.1601.pdf


Phase Estimation
Key procedure for span program algorithm

Input: 
• Unitary 𝑈
• Eigenstate 𝜓 , s.t 𝑈 𝜓 = 𝑒$%&' 𝜓
• Precision 𝜃

Output: | L𝜆| (approximation of  𝜆 to precision 𝜃), 

(See Reichardt 2010 https://arxiv.org/pdf/1005.1601.pdf for 3 different algorithms!)

https://arxiv.org/pdf/1005.1601.pdf
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Phase Estimation for Span Programs

Span program for 𝑓 on 𝑋 → ∃ unitary 𝑈 (created using 𝑂!), state 𝜓 𝑠. 𝑡. ∀𝑥 ∈ 𝑋:
• If 𝑓 𝑥 = 𝑌𝐸𝑆, 
• Output phase is 0 w.h.p

• If 𝑓 𝑥 = 𝑁𝑂
• Output phase is not 0 w.h.p, if use large enough 𝜃 (precision)

Larger 𝜃 Longer 
runtime



Reduce Precision (𝜃)
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Reduce Precision (𝜃)

• Run span program phase estimation algorithm with exponentially 
increasing precision 𝜃 until reach precision of original algorithm
Ø If get 0 phase at any repetition, continue
Ø If get non-0 phase at any repetition, stop and output NO

Result: faster runtime for easy NO instances



Easy Yes Instances?

Design negation procedure to produce a span program where YES/NO 
instances are exchanged.

Result: Formerly easy YES instances become easy NO instance



All Together

Run with exponentially increasing precision:
• Span program phase estimation algorithm 

Ø If get non-0 phase at any repetition, stop and output NO
• Negated span program phase estimation algorithm

Ø If get non-0 phase at any repetition, stop and output YES

Result: 
• faster runtime for easy YES and NO instances
• Geometric scaling increases worst-case runtime by only log factor



All Together

Run with exponentially increasing precision:
• Span program phase estimation algorithm 

Ø If get non-0 phase at any repetition, stop and output NO
• Negated span program phase estimation algorithm

Ø If get non-0 phase at any repetition, stop and output YES

Result: 
• faster runtime for easy YES and NO instances
• Geometric scaling increases worst-case runtime by only log factor

*Not exactly our algorithm :D
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Performance
Given a span program, each instance 𝑥 ∈ 𝑋 has a witness size 𝑤 𝑥 .

Original span program algorithm query complexity:

𝑂 max
!∈):+ ! ,-./

𝑤 𝑥 max
!∈)∶+ ! ,12

𝑤 𝑥

Our query complexity:
• If input instance 𝑥′ is YES:

-𝑂 𝑤(𝑥3) max
!∈)∶+ ! ,12

𝑤 𝑥

• If input instance 𝑥3 is NO

-𝑂 𝑤(𝑥3) max
!∈)∶+ ! ,-./

𝑤 𝑥
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Applications

Frequently: witness size 𝑤 𝑥 is related to natural difficulty measures
• For path detection
• YES: 𝑤 𝑥 < length of shortest path 
• NO: 𝑤 𝑥 < size of smallest cut 

• For total connectivity
• YES: 𝑤 𝑥 < average effective resistance
• NO: 𝑤 𝑥 < 1/(number of components)

• For cycle finding
• YES: 𝑤 𝑥 =1/(cycle rank)
• NO: 𝑤 𝑥 < no. of edges

• For search
• YES: 𝑤 𝑥 = no. of marked items

[Belovs and Reichardt ‘12, Jarret, 
Jeffery, SK, Piedrafita ’19]

[Jarret, Jeffery, SK, Piedrafita ’19]

[DeLorenzo, SK, Witter ’20]



State generation extension
State Generation Problem:
Convert |𝜌!⟩ to |𝜎!⟩ given access to 𝑂!.

There is a span program-like algorithm that is nearly optimal for worst-case 𝑥. 
Running faster on easier inputs?

Challenge:
Original algorithm has no measurements! 

Our Result:
Use an auxiliary test to determine when can stop running.



Future Work

• Get rid of log factors from error suppression? (Fixed-point methods)
• Opportunities for average case quantum vs. classical speed-ups
• Faster algorithms for producing witness states for easy instances
• Better error parameters for state generation
• Use these ideas to speed up non-span program algorithms on easy 

inputs

https://arxiv.org/pdf/2012.01276.pdf
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Jay-U 
Chung

Noel 
Anderson


