Speed-ups for Quantum
Algorithms with Easier Inputs

Shelby Kimmel, Jay-U Chung, Noel Anderson
Middlebury College

Easy vs Hard Instances

Path-Detection:

Harder: Easier:
EXIT

ENTRANCE

ENTRANCE

Easy vs Hard Instances: Classically

Ex: Path-Detection

Run search from ENTRANCE for time T (based on size of maze).
e If find EXIT, stop and output YES, otherwise continue

e If after time T don’t find EXIT, output NO

Easy vs Hard Instances: Classically

Ex: Path-Detection

Run search from ENTRANCE for time T (based on size of maze).
e If find EXIT, stop and output YES, otherwise continue

e If after time T don’t find EXIT, output NO

If easier: shorter run time
If harder: longer run time

Easy vs Hard Instances: Classically

Ex: Path-Detection

Run search from ENTRANCE for time T (based on size of maze).
e If find EXIT, stop and output YES, otherwise continue

e If after time T don’t find EXIT, output NO

If easier: shorter run time
If harder: longer run time

Key properties:
1. Can check status mid-algorithm and continue running
2. Witness of completion (if find EXIT, convinced there is a path)

Easy vs Hard Instances: Quantumly

Run search from ENTRANCE
e If find EXIT, stop and output YES, o
e |f after time T don’t find EXIT, o

ased on size of maze).
wise continue
NO

If easier: shorter run time
If harder: longer run time ‘

Key properties:
1. Can check status mid-algorithm and continue running
2. Witness of completion (if find EXIT, convinced there is a path)

X

Our Result

For a large class of quantum algorithms that previously used worst-case runtime for
all instances:

Our Result

For a large class of quantum algorithms that previously used worst-case runtime for
all instances:

Create a modified algorithm:
e If worst-case instance: (approximately) previous worst case run time
* If easier instance: shorter run time

Talk Outline

1. Oracle Model
2. Challenges:
a. Can’t check property of algorithm and then continue running <— Easy
i. Why challenge exists quantumly
ii. How to overcome
b. (Frequently) No (easily accessible) witness of completion «<— Harder
i. Why challenge exists quantumly
li. How to overcome
3. Applications & Future Work

Oracle Model

Given:

* Description of a Boolean function f mmmmm) Design an algorithm to
* Set X of possible instances decide any instance in X

Orade MOde' Is there a path?

Given: /

* Description of a Boolean function f mmmmm) Design an algorithm to
* Set X of possible instances\ decide any instance in X

Graph/maze

Oracle Model

Given:

* Description of a Boolean function f mmmmm) Design an algorithm to

* Set X of possible instances decide any instance in X
Input Output:

0, for specific instance x € X f(x), using as few queries

as possible
...in worst case

: ...while using fewer queries
l Ox b Xi on easier instances

Oracle Model

1 & ..
START 6 v 3 0O

Oracle Model

1 & ..
START 6 v 3 0O

Oracle Model

_ .4
1. .
START 6 ‘e

Oracle Model

START 6 3

Quantum Oracle Model

Given:

* Description of a Boolean function f mmmmm) Design an quantum

* Set X of possible instances algorithm to decide any
instance in X

Input Output:

0, for specific instance x € X f(x), using as few queries as

possible
...in worst case

_while using fewer queries on
[0)]0) m—p Ox m [0)|x;) easier instances

of queries — “runtime” — query
complexity

Talk Outline

1. Oracle Model
2. Challenges:
a. Can’t check property of algorithm and then continue running <— Easy
i. Why challenge exists quantumly
ii. How to overcome
b. (Frequently) No (easily accessible) witness of completion «<— Harder
i. Why challenge exists quantumly
li. How to overcome
3. Applications & Future Work

If ... Continue

If ... Continue

Classically: Can check property of algorithm and then continue running

Quantumly: to check property, need to measure
* Measurement — collapse
 Can’t continue

If ... Continue

T
Time until :
measurement °
8
4 o 06 0
pi

1 2 3 logT

Run

If ... Continue

T
Total Runtime:
o(T)

Time until . (Geometric series)
measurement °

8

4 o 06 0

pi

1 2 3 logT

Run

If ... Continue

! Total Runtime:
O(T)
Time until . (Geometric series)
measurement *
Runtime with Error
3 Reductign:
O(T)
A coe
2

1 2 3 logT

Run

Talk Outline

1. Oracle Model
2. Challenges:
a. Can’t check property of algorithm and then continue running <— Easy
i. Why challenge exists quantumly
ii. How to overcome
b. (Frequently) No (easily accessible) witness of completion «<— Harder
i. Why challenge exists quantumly
li. How to overcome
3. Applications & Future Work

High Level Problem: Witness is a Hard to
Characterize Quantum State

Yes Instance, run long enough: |YES)|witness)

|lwitness) = 1) + [3) + |6) + |7) + |8)

START

END

High Level Problem: Witness is a Hard to
Characterize Quantum State

. False positive

No Instance, not run long enough: |YES)|unconvincing witness)

|lunconvincing witness) = |1) — |3) + |6) — |8)

START

END

Talk Outline

1. Oracle Model
2. Challenges:
a. Can’t check property of algorithm and then continue running <— Easy
i. Why challenge exists quantumly
ii. How to overcome
b. (Frequently) No (easily accessible) witness of completion «<— Harder
i. Why challenge exists quantumly
ii. How to overcome — avoid dealing with witness states
3. Applications & Future Work

Our Result

Span program algorithms

e

For a large class of quantum algorithms that previously used worst-case runtime for
all instances:

Create a modified algorithm:
e If worst-case instance: (approximately) previous worst case run time
* If easier instance: shorter run time

Span Program Algorithms

—

2 ,4 mm) Quantum Query
S algorithm for f on

Encodes f on domain X domain X

V functions, 3 span program:
* Query optimal for worst-case (hardest) inputs
* Not known how to get a speed-up for easier instances*

*If don’t know ahead of time that instance is easy

(See Reichardt 2010 https://arxiv.org/pdf/1005.1601.pdf)

https://arxiv.org/pdf/1005.1601.pdf

Phase Estimation

Key procedure for span program algorithm
Input:

 Unitary U

* Eigenstate |Y), st U[yY) = e?™4|y)

* Precision 8

Output: |A| (approximation of || to precision 6),

(See Reichardt 2010 https://arxiv.org/pdf/1005.1601.pdf for 3 different algorithms!)

https://arxiv.org/pdf/1005.1601.pdf

Phase Estimation

|Y) Eigenphase

5/6

Phase 4/0
30— 1
2/0
1/6

Phase Estimation

|y) Eigenphase

5/6

Phase 4/6
30— A
2/0
1/6

Phase Estimation
Outcome Probability

— 5

/A

5/6
4/6
3/6
2/6
1/6 4«

Phase Estimation for Span Programs

Span program for f on X — 3 unitary U (created using 0,.), state |) s.t.Vx € X:

Phase Estimation for Span Programs

Span program for f on X — 3 unitary U (created using 0,.), state |) s.t.Vx € X:
* If f(x) =YES,

e Qutput phaseis 0 w.h.p
 Iff(x) =NO

* Qutput phase is not 0 w.h.p, if use large enough 6 (precision)

Phase Estimation for Span Programs

Span program for f on X — 3 unitary U (created using 0,.), state |) s.t.Vx € X:
* If f(x) =YES,

e Qutput phaseis 0 w.h.p
 Iff(x) =NO

* Qutput phase is not 0 w.h.p, if use large enough 6 (precision)

Larger 6 | mmmmm | lONBET

runtime

Reduce Precision (0)

Case O: Phase estimation

e YES INSTANCE 1) Eigenphase Outcome Probability

* Any precision I r >
5/6 5/60 YES Instance:

Phase 4;9 4;9 Want high

3/60 3/60 probability of
2/60 2/0 outcome 0
1/6 1/6

Reduce Precision (0)

Case 1:

 HARDNO
INSTANCE

 Large®:

Phase

|1) Eigenphase

NO Instance:
Want low
probability of
outcome 0

Reduce Precision (0)

Case 1:

 HARDNO
INSTANCE

 Large®:

Phase

|1) Eigenphase

Phase estimation
Outcome Probability

5/6 NO Instance:
4/0 Want low
3/60 probability of
2/0 outcome 0

1/3 \/

Reduce Precision (0)

Case 2:
 HARD NO
INSTANCE -
e Reduced 6: .
2/6"
Phase
1/6"
0

|1) Eigenphase
—

Phase estimation
Outcome Probability

/A E

2/6"
NO Instance:
Want low
1/6' probability of
outcome 0

0 X

Reduce Precision (0)

Case 2: qation
« HARD NO : " hbability
INSTANCE _ Conclu5|o.n.. If get .phase 0 with
* Reduced 6: . low precision, might be false
2/6'
Phase NO Instance:

Want low
probability of
outcome O

X

Reduce Precision (0)

Case 3: |
* EasyNO |y) Eigenphase
INSTANCE - —_—

e Reduced 6: .
2/6"
Phase — e
1/6"
0

Phase estimation
Outcome Probability

T —

2 /0" €
NO Instance:
Want low
1/6¢ ¢ probability of
outcome O

: v/

Reduce Precision (0)

Case 3:
* EasyNO
INSTANCE

e Reduced 6:

Phase

gation
: bbability
Conclusion: If get non-0 phase

with low precision, confident

NO Instance:
Want low
4+ probability of
outcome 0

: v/

Reduce Precision (0)

* Run span program phase estimation algorithm with exponentially
increasing precision @ until reach precision of original algorithm
» If get 0 phase at any repetition, continue
» If get non-0 phase at any repetition, stop and output NO

Result: faster runtime for easy NO instances

Easy Yes Instances?

Design negation procedure to produce a span program where YES/NO
instances are exchanged.

Result: Formerly easy YES instances become easy NO instance

All Together

Run with exponentially increasing precision:
* Span program phase estimation algorithm

> If get non-0 phase at any repetition, stop and output NO
* Negated span program phase estimation algorithm

» If get non-0 phase at any repetition, stop and output YES

Result:
* faster runtime for easy YES and NO instances
 Geometric scaling increases worst-case runtime by only log factor

All Together

Run with exponentially increasing precision:
* Span program phase estimation algorithm

> If get non-0 phase at any repetition, stop and output NO
* Negated span program phase estimation algorithm

» If get non-0 phase at any repetition, stop and output YES

Result:

* faster runtime for easy YES and NO instances
 Geometric scaling increases worst-case runtime by only log factor

*Not exactly our algorithm :D

Performance

Given a span program, each instance x € X has a witness size w(x).

Original span program algorithm query complexity:

O (oo P2 @) (en o ")

Performance

Given a span program, each instance x € X has a witness size w(x).

Original span program algorithm query complexity:
O (oo P2 @) (en o ")

Our query complexity:
* Ifinputinstance x’ is YES:

0 <\/W(x’) (xex?(?c))(:NO W(x))>

* Ifinputinstance x' is NO

0 <Jw(x’) (XEX:%%(:YESW(@»

Talk Outline

1. Oracle Model
2. Challenges:
a. Can’t check property of algorithm and then continue running <— Easy
i. Why challenge exists quantumly
ii. How to overcome
b. (Frequently) No (easily accessible) witness of completion «<— Harder
i. Why challenge exists quantumly
li. How to overcome
3. Applications & Future Work

Applications

Frequently: witness size w(x) is related to natural difficulty measures

Applications

Frequently: witness size w(x) is related to natural difficulty measures
* For path detection
* YES: w(x) < length of shortest path
 NO: w(x) < size of smallest cut

[Belovs and Reichardt ‘12, Jarret,
Jeffery, SK, Piedrafita '19]

Applications

Frequently: witness size w(x) is related to natural difficulty measures
* For path detection
* YES: w(x) < length of shortest path
 NO: w(x) < size of smallest cut
* For total connectivity
* YES: w(x) < average effective resistance Harret, Jeffery, SK, Piedrafita "19]
* NO: w(x) < 1/(number of components)

[Belovs and Reichardt ‘12, Jarret,
Jeffery, SK, Piedrafita '19]

Applications

Frequently: witness size w(x) is related to natural difficulty measures
* For path detection
* YES: w(x) < length of shortest path
 NO: w(x) < size of smallest cut
* For total connectivity
* YES: w(x) < average effective resistance Harret, Jeffery, SK, Piedrafita "19]
* NO: w(x) < 1/(number of components)
* For cycle finding
* YES: w(x) =1/(cycle rank) [Delorenzo, SK, Witter "20]
« NO: w(x) < no. of edges

[Belovs and Reichardt ‘12, Jarret,
Jeffery, SK, Piedrafita '19]

Applications

Frequently: witness size w(x) is related to natural difficulty measures
* For path detection
* YES: w(x) < length of shortest path
 NO: w(x) < size of smallest cut
* For total connectivity
* YES: w(x) < average effective resistance Harret, Jeffery, SK, Piedrafita "19]
* NO: w(x) < 1/(number of components)
* For cycle finding
* YES: w(x) =1/(cycle rank) [Delorenzo, SK, Witter "20]
« NO: w(x) < no. of edges
* For search
* YES: w(x) = no. of marked items

[Belovs and Reichardt ‘12, Jarret,
Jeffery, SK, Piedrafita '19]

State generation extension

State Generation Problem:
Convert |p,) to |o,) given access to O,.

There is a span program-like algorithm that is nearly optimal for worst-case x.
Running faster on easier inputs?

Challenge:
Original algorithm has no measurements!

Our Result:
Use an auxiliary test to determine when can stop running.

Future Work

* Get rid of log factors from error suppression? (Fixed-point methods)
 Opportunities for average case quantum vs. classical speed-ups

* Faster algorithms for producing witness states for easy instances

* Better error parameters for state generation

 Use these ideas to speed up non-span program algorithms on easy
inputs

https://arxiv.org/pdf/2012.01276.pdf

Thank youl!

Noel
Anderson

