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Big Goal: 

Design new quantum 
algorithms 



Result 

Knowledge of 
Q. Algorithm 

Structure 

Non-optimal 
algorithm 

Optimal 
algorithm 

Prove existence of  

Quantum Adversary  
Upper Bound: 



Outline 

• Oracle Model and Query Complexity 

• Quantum Adversary (Upper) Bound 

• Application 

– Prove existence of optimal algorithm using 
Quantum Adversary (Upper) Bound 

– Find explicit optimal algorithm 



Oracle Model 

 

Goal: Determine the value of 𝑓(𝑥1, … , 𝑥𝑛) for a known 
function f, with an oracle for 𝑥 

 

 

 

 

 
 

Only care about # of oracle calls (queries) 
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(quantum bounded error 
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Composed Functions 

𝑓(𝑥) 

𝑥1 𝑥2 𝑥𝑛 

(Known) 

(Accessed via 
an oracle) 

? 
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Quantum Adversary Upper Bound 
[SK ’12] 

Let 𝑓 be a Boolean function. 
 
Create an algorithm for 𝑓𝑘, with 𝑇 queries, so learn 

𝑄 𝑓𝑘  is upper bounded by 𝑇. 

 

Then 𝑄(𝑓) is upper bounded by 𝑇1/𝑘. 
 
 
(Q 𝑓 = quantum query complexity of 𝑓) 
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Let 𝑓 be a Boolean function. 
 
Create an algorithm for 𝑓𝑘, with 𝑇 queries, so learn 

𝑄 𝑓𝑘  is upper bounded by 𝑇. 

 

Then 𝑄(𝑓) is upper bounded by 𝑇1/𝑘. 

Surprising: 
• Does not give algorithm for 𝑓 
• This is a useful theorem!  

Algorithms 

Quantum Adversary Upper Bound 
[SK ’12] 



Quantum Adversary Upper Bound 

𝑓 

𝑄 𝑓 = 𝑂(𝑇) 

Expect 

𝑄 𝑓𝑘 = 𝑂(𝑇𝑘) 

Quantum 
Adversary 
Upper 
Bound 𝑓 

𝑄 𝑓 = 𝑂(𝑇) 



Example: 1-Fault NAND Tree 

NAND Tree  

 

𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑛−1 𝑥𝑛 𝑥5 𝑥6 

? 

Input 1 Input 2 NAND 

0 0 1 

1 0 1 

0 1 1 

1 1 0 



Example: 1-Fault NAND Tree 

Fault Output 
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0 0 0 

0 0 1 1 

0 0 0 0 1 1 1 1 1 0 1 0 0 

a 1 1 
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0 1 0 



Example: 1-Fault NAND Tree 

Fault Output 
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1 

1 

1 1 

0 0 0 

0 0 1 1 

0 0 0 0 1 1 1 1 1 0 1 0 0 

a 1 1 

1 

0 1 0 

Another view point: 1-Fault NAND Tree is a game tree 
where the players are promised that they will only 
have to make one critical decision in the game. 



Example: 1-Fault NAND Tree 

1-Fault NAND Tree 

Depth 𝑑 

𝑄 𝑓 = 𝑂(𝑑2) 

Depth 
𝑑 log 𝑑 

[1−Fault NAND Tree]log 𝑑 

𝑄 𝑓log 𝑑 = 𝑂(𝑑3) 

[Zhan, Hassidim, SK `12] 

We found algorithm for k-fault 
tree using (𝑘 × 𝑑𝑒𝑝𝑡ℎ2) queries 



Quantum Adversary Upper Bound 

1−Fault NAND Tree is a Boolean function 
 

Quantum query complexity of [1−Fault NAND Tree]log 𝑑  
is 𝑂(𝑑3) 
 
Then the quantum query complexity of  
[1−Fault NAND Tree] is 

𝑂 𝑑3/ log 𝑑 = O 23log 𝑑/ log 𝑑 = 𝑂(1) 



Extension: c-Fault Direct Tree 

Direct Tree  

 DIRECT 

DIRECT DIRECT 

DIRECT DIRECT DIRECT DIRECT 

DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT 

𝑥1 

? 

𝑥𝑛 

DIRECT → generalization of monotonic.  



Direct Functions 

• Examples: Majority, NOT-Majority 

• Generalization of monotonic  

𝑥 0 𝑥 1 

𝑓(𝑥 ) 

0 

1 

Each step flip a new bit 



Proving Quantum Adversary Upper 
Bound 

Lemma 1: 𝐴𝐷𝑉±(𝑓) = 𝜃(𝑄(𝑓)) [Reichardt, ‘09, ’11] 
 
Lemma 2: 𝐴𝐷𝑉±(𝑓𝑘) ≥ 𝐴𝐷𝑉±(𝑓)𝑘  
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)] 

Proof [SK ‘11]: 

𝑄 𝑓𝑘 = 𝑂 𝑇  

 

𝐴𝐷𝑉± 𝑓𝑘 = 𝑂(𝑇) 

 
𝐴𝐷𝑉±(𝑓)𝑘 = 𝑂(𝑇) 

 

𝐴𝐷𝑉±(𝑓) = 𝑂(𝑇1/𝑘) 



Proving Quantum Adversary Upper 
Bound 

Lemma 2: 𝐴𝐷𝑉±(𝑓𝑘) ≥ 𝐴𝐷𝑉±(𝑓)𝑘  
[Hoyer, Lee Spalek, ‘07, SK ‘11 (for partial functions)] 

• Given a matrix satisfying 
conditions of SDP for 𝑓, 
construct a matrix satisfying 
the SDP for 𝑓𝑘  

• When 𝑓 is partial, set entries 
corresponding to non-valid 
inputs to 0. Need to check 
that things go through 

𝑓 

𝑓 

𝑓 𝑓 ⋯ 



Matching Algorithm? 

• For all c-Fault Direct Trees, O(1) query 
algorithms must exist. 

• Can we find them? 



Method 1: Span Programs 

𝑓(𝑥) 

𝑥1 𝑥2 𝑥𝑛 

{𝑣 10, 𝑣 11} 
{𝑣 20, 𝑣 21} 

{𝑣 𝑛0, 𝑣 𝑛1} 

𝑡  

  𝑓 𝑥 𝑖 = 1 iff 

𝑡 ∈ 𝑆𝑃𝐴𝑁{𝑣 1𝑖 , 𝑣 2𝑖 , … , 𝑣 𝑛𝑖} 
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{𝑣 10, 𝑣 11} 
{𝑣 20, 𝑣 21} 

{𝑣 𝑛0, 𝑣 𝑛1} 

𝑡  

  𝑓 𝑥 𝑖 = 1 iff 

𝑡 ∈ 𝑆𝑃𝐴𝑁{𝑣 1𝑖 , 𝑣 2𝑖 , … , 𝑣 𝑛𝑖} 

AND: 

𝑣 11 =
1

1
, 𝑣 21 =

0

1
, 𝑡 =

1

0
 

All other: 0
0

 



Method 2: Haar Transform 

Fault 
Output 0 
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1 1 

0 0 0 

0 0 1 1 

0 0 0 0 1 1 1 1 1 0 0 

a 1 

1 

1 

1 

0 1 1 0 



Method 2: Haar Transform 

• Start in superposition: 
1

𝑛
 |𝑖 . 

• Apply Oracle. Phases= 

• Measure in Haar Basis 



Method 2: Haar Transform 

Fault 
Output 0 
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1 1 

0 0 0 

0 0 1 1 

0 0 0 0 1 1 1 1 1 0 0 
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Summary and Open Questions 

• Quantum adversary upper bound can prove the 
existence of quantum algorithms 
– 1-Fault NAND Tree 

– Other constant fault trees 

 

• Are there other problems where the adversary 
upper bound will be useful? 

• Do the matching algorithms have other 
applications? 

• Can we take advantage of the structure of 
quantum algorithms to prove other similar results 



Open Questions: Unique Result? 

• Classically is it possible to prove the existence 
of an algorithm without creating it? 

– Probabilistic/Combinatorial algorithms can prove 
that queries exist that will give an optimal 
algorithm, but would need to do a brute-force 
search to find them [Grebinski and Kucherov, ‘97] 



Application: Period Finding 

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ⋯ 



Summary and Open Questions 

• Quantum adversary upper bound can prove 
the existence of quantum algorithms 
– 1-Fault NAND Tree 

– Other constant fault trees 

 

• Are there other problems where this 
technique will be useful? 

• Do the matching algorithms have other 
applications? 

• Other Adversary SDP applications? 
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Types of Quantum Algorithms 

Structured 
Algorithms 
• Shor’s Algorithm 
• Hidden Subgroup 
• Phase Estimation 

Unstructured 
Algorithms 

• Grover’s Algorithm 
• Element 
Distinctness 

By understanding the structure underlying quantum 
algorithms, can we find and design new algorithms? 


