Shelby Kimmel

Center for Theoretical Physics, Massachusetts Institute of Technology

> Sandia National Laboratories Nov. 4, 2013

Big Goal:

Design new quantum algorithms

Outline

- Oracle Model and Query Complexity
- Quantum Adversary (Upper) Bound
- Application
 - Prove existence of optimal algorithm using Quantum Adversary (Upper) Bound
 - Find explicit optimal algorithm

Oracle Model

Goal: Determine the value of $f(x_1, ..., x_n)$ for a known function f, with an oracle for x

Only care about # of oracle calls (queries)

Query Complexity

Size of Problem

Query Complexity

Size of Problem

Composed Functions

Let f be a Boolean function.

Create an algorithm for f^k , with T queries, so learn $Q(f^k)$ is upper bounded by T.

Then Q(f) is upper bounded by $T^{1/k}$.

(Q(f) = quantum query complexity of f)

Let f be a Boolean function.

Create an algorithm for f^k , with T queries, so learn $Q(f^k)$ is upper bounded by T.

Then Q(f) is upper bounded by $T^{1/k}$.

Surprising:

• Does not give algorithm for f

Let f be a Boolean function.

Create an algorithm for f^k , with T queries, so learn $Q(f^k)$ is upper bounded by T.

Then Q(f) is upper bounded by $T^{1/k}$.

Surprising:

- Does not give algorithm for f
- This is a useful theorem!

Another view point: 1-Fault NAND Tree is a game tree where the players are promised that they will only have to make one critical decision in the game.

[Zhan, Hassidim, SK `12]

We found algorithm for k-fault tree using $(k \times depth^2)$ queries

1-Fault NAND Tree

 $Q(f) = O(d^2)$

1-Fault NAND Tree is a Boolean function

Quantum query complexity of $[1-Fault NAND Tree]^{\log d}$ is $O(d^3)$

Then the quantum query complexity of [1-Fault NAND Tree] is $O(d^{3/\log d}) = O(2^{3\log d/\log d}) = O(1)$

Extension: c-Fault Direct Tree

DIRECT \rightarrow generalization of monotonic.

Direct Functions

- Examples: Majority, NOT-Majority
- Generalization of monotonic

Proving Quantum Adversary Upper Bound

Lemma 1: $ADV^{\pm}(f) = \theta(Q(f))$ [Reichardt, '09, '11]

Lemma 2: $ADV^{\pm}(f^k) \ge ADV^{\pm}(f)^k$ [Hoyer, Lee, Spalek, '07, SK '11 (for partial functions)] **Proof** [SK '11]: $Q(f^k) = O(T)$ $ADV^{\pm}(f^k) = O(T)$ $ADV^{\pm}(f)^k = O(T)$ $ADV^{\pm}(f) = O(T^{1/k})$

Proving Quantum Adversary Upper Bound

Lemma 2: $ADV^{\pm}(f^k) \ge ADV^{\pm}(f)^k$ [Hoyer, Lee Spalek, '07, SK '11 (for partial functions)]

- Given a matrix satisfying conditions of SDP for *f*, construct a matrix satisfying the SDP for *f*^k
- When f is partial, set entries corresponding to non-valid inputs to 0. Need to check that things go through

Matching Algorithm?

- For all c-Fault Direct Trees, O(1) query algorithms must exist.
- Can we find them?

Method 1: Span Programs

 \vec{t}

$$f(\vec{x}_i) = 1 \text{ iff}$$

$$\vec{t} \in SPAN\{\vec{v}_{1i}, \vec{v}_{2i}, \dots, \vec{v}_{ni}\}$$

Method 1: Span Programs

$$f(\vec{x}_i) = 1 \text{ iff}$$

$$\vec{t} \in SPAN\{\vec{v}_{1i}, \vec{v}_{2i}, \dots, \vec{v}_{ni}\}$$

AND:

$$\vec{v}_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \vec{v}_{21} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \vec{t} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

All other: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Method 2: Haar Transform

Method 2: Haar Transform

- Start in superposition: $\frac{1}{\sqrt{n}} \sum |i\rangle$.
- Apply Oracle. Phases=
- Measure in Haar Basis

Method 2: Haar Transform

Summary and Open Questions

- Quantum adversary upper bound can prove the existence of quantum algorithms
 - 1-Fault NAND Tree
 - Other constant fault trees
- Are there other problems where the adversary upper bound will be useful?
- Do the matching algorithms have other applications?
- Can we take advantage of the structure of quantum algorithms to prove other similar results

Open Questions: Unique Result?

- Classically is it possible to prove the existence of an algorithm without creating it?
 - Probabilistic/Combinatorial algorithms can prove that queries exist that will give an optimal algorithm, but would need to do a brute-force search to find them [Grebinski and Kucherov, '97]

Application: Period Finding

0000	1 1 1 1	1 1 1	1 0 0	00

Summary and Open Questions

- Quantum adversary upper bound can prove the existence of quantum algorithms
 - 1-Fault NAND Tree
 - Other constant fault trees
- Are there other problems where this technique will be useful?
- Do the matching algorithms have other applications?
- Other Adversary SDP applications?

Types of Quantum Algorithms

By understanding the structure underlying quantum algorithms, can we find and design new algorithms?