
Quantum Adversary
(Upper) Bound

Shelby Kimmel
Center for Theoretical Physics,

Massachusetts Institute of Technology

Sandia National Laboratories

 Nov. 4, 2013

Big Goal:

Design new quantum
algorithms

Result

Knowledge of
Q. Algorithm

Structure

Non-optimal
algorithm

Optimal
algorithm

Prove existence of

Quantum Adversary
Upper Bound:

Outline

• Oracle Model and Query Complexity

• Quantum Adversary (Upper) Bound

• Application

– Prove existence of optimal algorithm using
Quantum Adversary (Upper) Bound

– Find explicit optimal algorithm

Oracle Model

Goal: Determine the value of 𝑓(𝑥1, … , 𝑥𝑛) for a known
function f, with an oracle for 𝑥

Only care about # of oracle calls (queries)

Q(𝑓)
(quantum bounded error

query complexity)

Classical
Oracle

Quantum
Oracle |𝑥𝑖

|𝑖 |𝑖

|0

𝑖 𝑥𝑖

Query Complexity

o
f

Q
u

er
ie

s

Size of Problem

Algorithms

Quantum Adversary Bound
[Ambainis ’00]

Polynomial Method
[Beals et al. ‘01]

Query Complexity

o
f

Q
u

er
ie

s

Algorithms

Quantum Adversary Bound
[Ambainis ’00]

Polynomial Method
[Beals et al. ‘01]

Quantum Adversary
(Upper) Bound [SK ‘12]

Size of Problem

Composed Functions

𝑓(𝑥)

𝑥1 𝑥2 𝑥𝑛

(Known)

(Accessed via
an oracle)

?

Composed Functions

𝑓𝑘 ⇒ 𝑓
composed 𝑘
times

⋯ ⋯ ⋯

𝑓 𝑓 𝑓

?

1

𝑓

𝑓

𝑓 𝑓 ⋯

⋯

⋯

⋯

2

𝑘

Quantum Adversary Upper Bound
[SK ’12]

Let 𝑓 be a Boolean function.

Create an algorithm for 𝑓𝑘, with 𝑇 queries, so learn

𝑄 𝑓𝑘 is upper bounded by 𝑇.

Then 𝑄(𝑓) is upper bounded by 𝑇1/𝑘.

(Q 𝑓 = quantum query complexity of 𝑓)

Let 𝑓 be a Boolean function.

Create an algorithm for 𝑓𝑘, with 𝑇 queries, so learn

𝑄 𝑓𝑘 is upper bounded by 𝑇.

Then 𝑄(𝑓) is upper bounded by 𝑇1/𝑘.

Surprising:
• Does not give algorithm for 𝑓

Algorithms

Quantum Adversary Upper Bound
[SK ’12]

Let 𝑓 be a Boolean function.

Create an algorithm for 𝑓𝑘, with 𝑇 queries, so learn

𝑄 𝑓𝑘 is upper bounded by 𝑇.

Then 𝑄(𝑓) is upper bounded by 𝑇1/𝑘.

Surprising:
• Does not give algorithm for 𝑓
• This is a useful theorem!

Algorithms

Quantum Adversary Upper Bound
[SK ’12]

Quantum Adversary Upper Bound

𝑓

𝑄 𝑓 = 𝑂(𝑇)

Expect

𝑄 𝑓𝑘 = 𝑂(𝑇𝑘)

Quantum
Adversary
Upper
Bound 𝑓

𝑄 𝑓 = 𝑂(𝑇)

Example: 1-Fault NAND Tree

NAND Tree

𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑛−1 𝑥𝑛 𝑥5 𝑥6

?

Input 1 Input 2 NAND

0 0 1

1 0 1

0 1 1

1 1 0

Example: 1-Fault NAND Tree

Fault Output
0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 1 0 0

a 1 1

1

0 1 0

Example: 1-Fault NAND Tree

Fault Output
0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 1 0 0

a 1 1

1

0 1 0

Another view point: 1-Fault NAND Tree is a game tree
where the players are promised that they will only
have to make one critical decision in the game.

Example: 1-Fault NAND Tree

1-Fault NAND Tree

Depth 𝑑

𝑄 𝑓 = 𝑂(𝑑2)

Depth
𝑑 log 𝑑

[1−Fault NAND Tree]log 𝑑

𝑄 𝑓log 𝑑 = 𝑂(𝑑3)

[Zhan, Hassidim, SK `12]

We found algorithm for k-fault
tree using (𝑘 × 𝑑𝑒𝑝𝑡ℎ2) queries

Quantum Adversary Upper Bound

1−Fault NAND Tree is a Boolean function

Quantum query complexity of [1−Fault NAND Tree]log 𝑑
is 𝑂(𝑑3)

Then the quantum query complexity of
[1−Fault NAND Tree] is

𝑂 𝑑3/ log 𝑑 = O 23log 𝑑/ log 𝑑 = 𝑂(1)

Extension: c-Fault Direct Tree

Direct Tree

 DIRECT

DIRECT DIRECT

DIRECT DIRECT DIRECT DIRECT

DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT DIRECT

𝑥1

?

𝑥𝑛

DIRECT → generalization of monotonic.

Direct Functions

• Examples: Majority, NOT-Majority

• Generalization of monotonic

𝑥 0 𝑥 1

𝑓(𝑥)

0

1

Each step flip a new bit

Proving Quantum Adversary Upper
Bound

Lemma 1: 𝐴𝐷𝑉±(𝑓) = 𝜃(𝑄(𝑓)) [Reichardt, ‘09, ’11]

Lemma 2: 𝐴𝐷𝑉±(𝑓𝑘) ≥ 𝐴𝐷𝑉±(𝑓)𝑘
[Hoyer, Lee, Spalek, ‘07, SK ‘11 (for partial functions)]

Proof [SK ‘11]:

𝑄 𝑓𝑘 = 𝑂 𝑇

𝐴𝐷𝑉± 𝑓𝑘 = 𝑂(𝑇)

𝐴𝐷𝑉±(𝑓)𝑘 = 𝑂(𝑇)

𝐴𝐷𝑉±(𝑓) = 𝑂(𝑇1/𝑘)

Proving Quantum Adversary Upper
Bound

Lemma 2: 𝐴𝐷𝑉±(𝑓𝑘) ≥ 𝐴𝐷𝑉±(𝑓)𝑘
[Hoyer, Lee Spalek, ‘07, SK ‘11 (for partial functions)]

• Given a matrix satisfying
conditions of SDP for 𝑓,
construct a matrix satisfying
the SDP for 𝑓𝑘

• When 𝑓 is partial, set entries
corresponding to non-valid
inputs to 0. Need to check
that things go through

𝑓

𝑓

𝑓 𝑓 ⋯

Matching Algorithm?

• For all c-Fault Direct Trees, O(1) query
algorithms must exist.

• Can we find them?

Method 1: Span Programs

𝑓(𝑥)

𝑥1 𝑥2 𝑥𝑛

{𝑣 10, 𝑣 11}
{𝑣 20, 𝑣 21}

{𝑣 𝑛0, 𝑣 𝑛1}

𝑡

 𝑓 𝑥 𝑖 = 1 iff

𝑡 ∈ 𝑆𝑃𝐴𝑁{𝑣 1𝑖 , 𝑣 2𝑖 , … , 𝑣 𝑛𝑖}

Method 1: Span Programs

𝑓(𝑥)

𝑥1 𝑥2 𝑥𝑛

{𝑣 10, 𝑣 11}
{𝑣 20, 𝑣 21}

{𝑣 𝑛0, 𝑣 𝑛1}

𝑡

 𝑓 𝑥 𝑖 = 1 iff

𝑡 ∈ 𝑆𝑃𝐴𝑁{𝑣 1𝑖 , 𝑣 2𝑖 , … , 𝑣 𝑛𝑖}

AND:

𝑣 11 =
1

1
, 𝑣 21 =

0

1
, 𝑡 =

1

0

All other: 0
0

Method 2: Haar Transform

Fault
Output 0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 0

a 1

1

1

1

0 1 1 0

Method 2: Haar Transform

• Start in superposition:
1

𝑛
 |𝑖 .

• Apply Oracle. Phases=

• Measure in Haar Basis

Method 2: Haar Transform

Fault
Output 0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 0

a 1

1

1

1

0 1 1 0

Summary and Open Questions

• Quantum adversary upper bound can prove the
existence of quantum algorithms
– 1-Fault NAND Tree

– Other constant fault trees

• Are there other problems where the adversary
upper bound will be useful?

• Do the matching algorithms have other
applications?

• Can we take advantage of the structure of
quantum algorithms to prove other similar results

Open Questions: Unique Result?

• Classically is it possible to prove the existence
of an algorithm without creating it?

– Probabilistic/Combinatorial algorithms can prove
that queries exist that will give an optimal
algorithm, but would need to do a brute-force
search to find them [Grebinski and Kucherov, ‘97]

Application: Period Finding

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ⋯

Summary and Open Questions

• Quantum adversary upper bound can prove
the existence of quantum algorithms
– 1-Fault NAND Tree

– Other constant fault trees

• Are there other problems where this
technique will be useful?

• Do the matching algorithms have other
applications?

• Other Adversary SDP applications?

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓 𝑥

0 0 1 𝑥 0 0

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓 𝑥

0 0 1 𝑥 0 0

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓 𝑥

0 0 1 𝑥 0 0

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓 𝑥

0 0 1 𝑥 0 0

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓 𝑥

0 0 1 𝑥 0 0

Example of Query Complexity

0,0,⋯ , 0,0

1,1,⋯ , 1,1

50% 0, 50% 1

0

0

1

𝑓 𝑥

0 0 1 𝑥 0 0

Types of Quantum Algorithms

Structured
Algorithms
• Shor’s Algorithm
• Hidden Subgroup
• Phase Estimation

Unstructured
Algorithms

• Grover’s Algorithm
• Element
Distinctness

By understanding the structure underlying quantum
algorithms, can we find and design new algorithms?

