Quantum Adversary (Upper) Bound

Shelby Kimmel Massachusetts Institute of Technology

arXiv:1101.0797

Big Goal:

Design new quantum algorithms

Types of Quantum Algorithms

By understanding the structure underlying quantum algorithms, can we find and design new algorithms?

Result

Outline

- Oracle Model and Query Complexity
- Quantum Adversary (Upper) Bound
- Application

Oracle Model

Goal: Determine the value of $f(x_1, ..., x_n)$ for a known function f, with an oracle for x

Only care about # of oracle calls (queries)

Query Complexity

Size of Problem

Composed Functions

Quantum Adversary Upper Bound

Let f be a Boolean function.

Create an algorithm for f^k , with T queries, so learn $Q(f^k)$ is upper bounded by T.

Then the quantum query complexity of f is upper bounded by $T^{1/k}$.

Surprising:

- Does not give algorithm for *f*
- This is a useful theorem!

Quantum Adversary Upper Bound

Example: 1-Fault NAND Tree

Example: 1-Fault NAND Tree

Another view point: 1-Fault NAND Tree is a game tree where the players are promised that they will only have to make one critical decision in the game.

Example: 1-Fault NAND Tree

[Zhan, Hassidim, SK `12]

Quantum Adversary Upper Bound

1-Fault NAND Tree is a Boolean function

Quantum query complexity of $[1-Fault NAND Tree]^{\log d}$ is $\leq d^3$

Then the quantum query complexity of [1–Fault NAND Tree] is $d^{3/\log d} = 2^{3\log d/\log d} = constant$

Proving Quantum Adversary Upper Bound

Lemma 1: $ADV^{\pm}(f) \approx Q(f)$ [Reichardt, '09, '11]

Lemma 2: $ADV^{\pm}(f^k) \ge ADV^{\pm}(f)^k$ [Hoyer, Lee Spalek, '07, SK '11 (for partial functions)]

Proof:

$$Q(f^{k}) = O(T)$$
$$ADV^{\pm}(f^{k}) = O(T)$$
$$ADV^{\pm}(f)^{k} = O(T)$$
$$ADV^{\pm}(f) = O(T^{1/k})$$

Extension: c-Fault Direct Tree

DIRECT \rightarrow generalization of monotonic.

Direct Functions

- Examples: Majority, NOT-Majority
- Generalization of monotonic

Algorithm?

• For all c-Fault Direct Trees, constant query algorithms must exist.

Span Programs

 \vec{t}

$$f(\vec{x}_i) = 1 \text{ iff}$$

$$\vec{t} \in SPAN\{\vec{v}_{1i}, \vec{v}_{2i}, \dots, \vec{v}_{ni}\}$$

1-Fault NAND Tree

Haar Transform Algorithm

- Start in superposition: $\frac{1}{\sqrt{n}} \sum |i\rangle$.
- Apply Oracle. Phases=
- Measure in Haar Basis

1-Fault NAND Tree

Period Finding

Summary and Open Questions

- Quantum adversary upper bound can prove the existence of quantum algorithms
 - 1-Fault NAND Tree
 - Other constant fault trees
- Are there other problems where the adversary upper bound will be useful?
- Do the matching algorithms have other applications?
- Can we take advantage of the structure of quantum algorithms to prove other similar results

Open Questions: Unique Result?

- Classically is it possible to prove the existence of an algorithm without creating it?
 - Probabilistic/Combinatorial algorithms can prove that queries exist that will give an optimal algorithm, but would need to do a brute-force search to find them [Grebinski and Kucherov, '97]

Span Programs

$$f(\vec{x}_i) = 1 \text{ iff}$$

$$\vec{t} \in SPAN\{\vec{v}_{1i}, \vec{v}_{2i}, \dots, \vec{v}_{ni}\}$$

NAND:
$$\vec{v}_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \vec{v}_{20} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \vec{t} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Summary and Open Questions

- Quantum adversary upper bound can prove the existence of quantum algorithms
 - 1-Fault NAND Tree
 - Other constant fault trees
- Are there other problems where this technique will be useful?
- Do the matching algorithms have other applications?
- Other Adversary SDP applications?

Smaller is not always easier

1-Fault NAND Tree

Quantum Adversary Upper Bound

Let f be a Boolean function.

Let $Q(f^n)$, (the quantum query complexity of f^n), be O(K).

Then the quantum query complexity of f is $O(K^{1/n})$

Surprising:

- Does not give algorithm for *f*
- This is a useful theorem!

Goal: Understand Power of Quantum Computers

Size of Problem

New Tool

Size of Problem

Depth [Farhi et al '08]

Quantum query complexity $= O(2^{0.5d})$

Randomized Classical Query Complexity= $\Omega(2^{0.753d})$

[Saks and Widgerson '86]

Q(f) =Quantum Query Complexity = # of queries to black box needed to evaluate f w/ high probability