
Quantum Adversary (Upper)
Bound

Shelby Kimmel
Massachusetts Institute of Technology

ICALP 2012

Goal: Understand Power of Quantum
Computers

𝑓𝑓(𝑥𝑥)

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

(Known)

(Unknown)

?

|𝑖𝑖⟩ |𝑥𝑥𝑖𝑖⟩

+

Tools

𝑄𝑄 𝑓𝑓 = Quantum Query Complexity = # of queries to
black box needed to evaluate 𝑓𝑓 w/ high probability

Goal: Understand Power of Quantum
Computers

of

 Q
ue

rie
s

Size of Problem

Algorithms

Adversary Method,
Polynomial Method

Quantum Adversary
Upper Bound

Outline

• Quantum Adversary Upper Bound
• Example: “1-Fault NAND Tree”
• Summary and Open Problems

Quantum Adversary Upper Bound

𝑓𝑓(𝑥𝑥)

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

(Known)

(Unknown)

?

Quantum Adversary Upper Bound
𝑓𝑓𝑛𝑛 ⇒ 𝑓𝑓
composed 𝑛𝑛
times

⋯ ⋯ ⋯

𝑓𝑓 𝑓𝑓

𝑓𝑓

𝑓𝑓

𝑓𝑓

𝑓𝑓 𝑓𝑓

?

1

⋯

⋯

⋯

⋯

2

𝑛𝑛

Quantum Adversary Upper Bound

Let 𝑓𝑓 be a Boolean function.

Create an algorithm for 𝑓𝑓𝑛𝑛, so learn 𝑄𝑄 𝑓𝑓𝑛𝑛 = 𝑂𝑂(𝐾𝐾).

Then the quantum query complexity of 𝑓𝑓 is 𝑂𝑂(𝐾𝐾1/𝑛𝑛)

Surprising:
• Does not give algorithm for 𝑓𝑓
• This is a useful theorem!

Algorithms

Quantum Adversary Upper Bound

𝑓𝑓

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑇𝑇)

Expect

𝑄𝑄 𝑓𝑓𝑛𝑛 = 𝑂𝑂(𝑇𝑇𝑛𝑛)

Quantum
Adversary
Upper
Bound 𝑓𝑓

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑇𝑇)

1-Fault NAND Tree

NAND Tree

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥𝑛𝑛−1 𝑥𝑥𝑛𝑛 𝑥𝑥5 𝑥𝑥6

?

1-Fault NAND Tree

Fault
Output 0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 1 0 0

a 1

1

1

1

0 1

1-Fault NAND Tree

1-Fault NAND Tree

Depth 𝑑𝑑

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑑𝑑2)

Depth
𝑑𝑑 log𝑑𝑑

1-Fault NAND Tree
Composed log𝑑𝑑 times

𝑄𝑄 𝑓𝑓log 𝑑𝑑 = 𝑂𝑂(𝑑𝑑3)

[Zhan, Hassidim, K. 2012]

Quantum Adversary Upper Bound

1−Fault NAND Tree is a Boolean function

Quantum query complexity of [1−Fault NAND Tree]log 𝑑𝑑
is 𝑂𝑂(𝑑𝑑3)

Then the quantum query complexity of
[1−Fault NAND Tree] is
𝑂𝑂 𝑑𝑑3/ log 𝑑𝑑 = O 23log 𝑑𝑑/ log 𝑑𝑑 = 𝑂𝑂(1)

1-Fault NAND Tree

1-Fault NAND Tree

Depth 𝑑𝑑

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑑𝑑2)

Depth
𝑑𝑑 log𝑑𝑑

1-Fault NAND Tree
Composed log𝑑𝑑 times

𝑄𝑄 𝑓𝑓 = 𝑂𝑂(𝑑𝑑3)

[Zhan, Hassidim, K. 2012]

Algorithm?

• Found a matching algorithm using span
programs

• Found a related algorithm that uses quantum
Haar Transform

1-Fault NAND Tree

Fault
Output 0

1

1

1 1

0 0 0

0 0 1 1

0 0 0 0 1 1 1 1 1 0 0

a 1

1

1

1

0 1

Depth
𝑑𝑑

1 0

Summary and Open Questions
• Quantum adversary upper bound can prove

the existence of quantum algorithms
– 1-Fault NAND Tree
– Other constant fault trees

• Are there other problems where this

technique will be useful?
• Do the matching algorithms have other

applications?
• Other Adversary SDP applications?

Smaller is not always easier

1-Fault NAND Tree

Quantum Adversary Upper Bound

Let 𝑓𝑓 be a Boolean function.

Let 𝑄𝑄 𝑓𝑓𝑛𝑛 , (the quantum query complexity of
𝑓𝑓𝑛𝑛), be 𝑂𝑂(𝐾𝐾).

Then the quantum query complexity of 𝑓𝑓 is
𝑂𝑂(𝐾𝐾1/𝑛𝑛)

Surprising:
• Does not give algorithm for 𝑓𝑓
• This is a useful theorem!

Algorithms

Goal: Understand Power of Quantum
Computers

of

 Q
ue

rie
s

Size of Problem

Algorithms

Adversary Method,
Polynomial Method

New Tool

of
 Q

ue
rie

s

Size of Problem

Quantum Adversary
Upper Bound

Depth
𝑑𝑑

Quantum query complexity = 𝑂𝑂(20.5𝑑𝑑)

Randomized Classical Query Complexity= Ω(20.753𝑑𝑑)

[Farhi et al ’08]

[Saks and
Widgerson ’86]

	Quantum Adversary (Upper) Bound
	Goal: Understand Power of Quantum Computers
	Goal: Understand Power of Quantum Computers
	Outline
	Quantum Adversary Upper Bound
	Quantum Adversary Upper Bound
	Slide Number 7
	Quantum Adversary Upper Bound
	1-Fault NAND Tree
	1-Fault NAND Tree
	1-Fault NAND Tree
	Quantum Adversary Upper Bound
	1-Fault NAND Tree
	Algorithm?
	1-Fault NAND Tree
	Summary and Open Questions
	Smaller is not always easier
	1-Fault NAND Tree
	Slide Number 19
	Quantum Adversary Upper Bound
	Goal: Understand Power of Quantum Computers
	New Tool
	Slide Number 23

