Shelby Kimmel

shelbyk@umd.edu • 617-549-5732 University of Maryland - QuICS Atlantic Bld 224, Room 3100E College Park, Maryland 20742 Website: www.shelbykimmel.com

Education

- 2009-2014Massachusetts Institute of Technology (MIT), Cambridge, MA
Ph.D. in Physics. Advised by Edward Farhi.
Thesis Title: Cumulative Effects in Quantum Algorithms and Quantum Process Tomography
- 2004-2008 Williams College, Williamstown, MA B.A. in Astrophysics. Advised by William Wootters. GPA 3.96/4.0 Thesis Title: Quantifying the Entanglement Cost of Nonlocal Measurements.

Research Experience

2014-present Hartree Postdoctoral Fellow at the Joint Center for Quantum Information and Computer Science (QuICS), University of Maryland. College Park, MD.

- With QuICS postdoc Bill Fefferman, proved an oracle separation between QMA and QCMA (two quantum versions of NP).
- With QuICS fellow Yi-Kai Liu, combined compressed sensing with robust process tomography to create a new efficient and accurate process characterization procedure.
- With Caltech postdoc Stacey Jeffery, explored the connection between quantum algorithms for formula evaluation problems and graph connectivity
- With Sandia National Labs researcher Kenneth Rudinger, analyzed new techniques for architecture-independent process tomography
- With QuICS postdoc Cedric Lin and others, created procedures for simulating quantum Hamiltonians given a quantum description of the Hamiltonian.
- With Berkeley postdoc Henry Yuen and others, investigated a triply quantum version of the complexity class NP (with a quantum problem, quantum verifier, and a quantum proof).
- With U. Sydney postdoc Chris Granade, created a procedure to accurately characterize quantum states without well-characterized measurements.

2009-2014 **Center for Theoretical Physics, MIT**. *Cambridge, MA*.

Advised by Edward Farhi

- Created quantum algorithms for classes of Boolean formula evaluation problems and quantum satisfiability problems.
- Created a technique for non-constructively proving the existence of a quantum algorithm; using it, you can determine an algorithm with certain properties must exist, but might not know what the algorithm is.

Summers,	Raytheon BBN Technologies. Cambridge, MA.
2012, 2013	Advised by Marcus P. da Silva
	• Designed and analyzed new procedures for robust quantum process characterization.
	• Implemented procedures on a superconducting qubit system and analyzed the results of experiments using MATLAB.
Summer, 2011	Institute for Quantum Computing at the University of Waterloo. Waterloo, ON.
	Advised by Andrew Childs
	• Developed quantum algorithms for Boolean formulas using quantum search subroutines.
	• Studied semi-definite programs that characterize query complexity.
2007-2008	Williams College. Williamstown, MA.
	Advised by William Wootters
	• Studied the entanglement resources needed to perform measurements on a quantum state shared by two separated parties.
Teaching	
Fall 2016	Discussion Section Teacher, Object Oriented Programming, University of Maryland, College Park, MD
	• Taught Java to 40 undergraduate students for 2 hours a week.
	• Classes included a mix of short lectures, small group discussions, and coding activities.
	• Taught the lecture (3 sections of 140 students) when the head lecturer was away.
Fall 2016	Co-Teacher, Introduction to Quantum Information Processing, University of Maryland, College Park, MD
	• Taught 12 hours of lecture to 40 first-year graduate physics and computer science students.
	Incorporated active learning exercises.
	• Organized peer editing system for project paper to encourage students to refine their writing.
Springs 2012,	Writing Assistant, Undergraduate Quantum Mechanics, MIT, Cambridge, MA
2014	• Guided ~15 students through the process of writing an academic style research report on a topic of the student's choosing within quantum mechanics.
	• Led peer-review meetings where students critiqued each other's work in a supportive environment
Spring 2011	Teaching Assistant, Undergraduate First Year Electricity and Magnetism, <i>MIT</i> , <i>Cambridge, MA</i>
	• Taught weekly problem solving sessions to 45 students.

	• Participated in active learning lessons three times a week, leading students through concept questions and experiments.
2010-2011	Graduate Teaching Certificate Program, MIT, Cambridge, MA
	• Attended 8 workshops on pedagogy, curriculum planning, and classroom best
	practices, and gave a lecture that was critiqued by the class and instructor.
2010-2013	Middle School Tutor for Tutoring Plus, Cambridge MA
	• Worked with one student for an hour a week over the course of the school year to help him with essays, math homework, and the development of critical reading skills.
2008-2009	Fulbright Korea: English Teaching Assistant. Gochangbuk High School, Gochang, S. Korea
	 Planned and taught lessons in conversational English at a rural Korean high school and middle school to ~500 students a week
2005-2008	Writing Tutor. Williams College, Williamstown, MA.
	 Worked one-on-one with ~4 different undergrads a week to help them brainstorm, organize and edit papers.

Advising

Summer 2016	Undergraduate Research Advising, University of Maryland, College Park, MD
	• Advised Andrew Zhao on a project researching whether compressed sensing techniques can be used to achieve Heisenberg scaling in phase estimation of quantum
	unitaries.
Spring 2016	Undergraduate Research Advising, University of Maryland, College Park, MD
	• Advised two students, Andrew Zhao and Mark Hubbert, on a project studying optimal cost strategies for quantum tomography schemes. The students studied the problem
	analytically and numerically, and won 3 rd prize in a physics department undergraduate poster contest.
Summer 2015	Undergraduate Research Advising, University of Maryland, College Park, MD
	• Advised (with Prof. Andrew Childs) Hardik Bansal, on a project to find optimal ways of measuring a quantum state shared between two physically separated parties.
2014-present	Women in Physics Mentoring Program, University of Maryland, College Park, MD.
	• Participated in a mentoring group that included an undergraduate woman and a graduate woman in physics.
2009-2014	Women in Physics Mentoring Program, MIT, Cambridge MA
	• Coordinated graduate/undergraduate women in physics mentoring program with undergraduate co-leader.
	• Mentored 2 undergraduate women each year. Discussed finding research advisors, time management, and applying to graduate school.
	Organized a networking seminar

Leadership

Summer 2016 **Co-organizer, Workshop on QMA(2) and the Complexity of Entanglement,** University of Maryland, College Park, MD.

• Planned a small, highly specialized workshop in the field of quantum complexity theory. Responsibilities included deciding on scope, format, and attendees; maintaining the website; chairing sessions; and communicating logistics to attendees.

2010-2012 Graduate Women at MIT (GWAMIT). MIT, Cambridge, MA

- Co-organized mentoring program for graduate women. Helped to recruit 200 alumni, professors, and graduate students to the program, matched participants through surveys, managed a committee of 8 people, and planned bi-yearly dinners.
- Arranged speakers, advertised, and hosted the Online Personal Branding Event at the GWAMIT Empowerment Conference (2010)
- Informed the MIT Women in Physics group of various GWAMIT events as the GWAMIT physics liaison.

Awards

- 2014 Hartree Postdoctoral Fellow, QuICS
- 2013 Graduate Women of Excellence Award (1 of 50), MIT.
- 2012 Best Student Paper Track A (1 of 2), ICALP. (For "Quantum Adversary (Upper) Bound.")
- 2012 Best Scientific Poster (1 of 2), QIP. (For "The Quantum Query Complexity of Read-Many Formulas.")
- 2011 Best Talk (1 of 3) Women in Physics Canada.
- 2009 American Physical Society Apker Award Finalist (national award for undergraduate research; 1 of 3)

Selected Talks

- 2016 University of Copenhagen QMATH Center Kick-Off Conference. Copenhagen, Denmark. "What does the effective resistance of electrical circuits have to do with quantum algorithms?"
- 2016 Schrodinger Sessions (a workshop to introduce quantum mechanics to science fiction writers). College Park, MD. "Quantum Algorithms."
- 2016 Last Frontiers in Quantum Information Workshop. Juneau, AK. "Turning States Into Unitaries: Optimal Sample-Based Hamiltonian Simulation."
- 2015 Sandia National Labs. Albuquerque, NM. "Robust Phase Estimation with Applications to Single-Qubit Process Characterization."
- 2014 Williams College. Williamstown, MA. "Problems with Multiple Oracles."

- 2014 APS March Meeting, Invited Talk. Denver, CO. "Randomized Benchmarking Tomography."
- 2013 Coogee Quantum Information Conference. Sydney, AU. "Problems with Multiple Oracles."
- 2013 Isaac Newton Institute, Cambridge, UK. "Robust Characterization of Quantum Processes."
- 2013 Perimeter Institute. Waterloo, Canada "The Quantum Adversary (Upper) Bound."
- 2012 UC Berkeley. Berkeley, CA. "The Quantum Query Complexity of Read Many Formulas."
- 2011 Women in Physics Canada. Waterloo, Canada. "Super-polynomial Quantum Speed-ups in Boolean Formulas."

Skills

- Matlab, Mathematica: very experienced
- Java, Julia, Python, html, CSS: proficient

Professional Service

- Reviewer for Symposium on Foundations of Computer Science
- Program Committee for Theory of Quantum Computing Conference
- Reviewer for Quantum Information Processing conference
- Reviewer for Nature Communications
- Program Committee for Asian Quantum Information Science conference
- Reviewer for Theory of Computing
- Reviewer for Theory of Quantum Computing conference
- Reviewer for Quantum Information and Computation
- Sorter for the American Physical Society March Meeting
- Reviewer for Symposium on Theoretical Aspects of Computer Science
- Reviewer for European Symposium on Algorithms
- Reviewer for International Journal of Quantum Information
- Reviewer for Symposium on Discrete Algorithms

Publications

Depending on the topic of the research, I publish in both computer science conference proceedings and in physics journals. Physics journals are more prestigious than physics conference proceedings. Additionally, in physics papers, author order is often important; generally the first author is the lead author.

- S. Jeffery. **S. Kimmel.** Quantum Algorithms for Graph Connectivity and Formula Evaluation. Arxiv:1704.00765. (Accepted talk at TQC 2016)
- K. Rudinger, **S. Kimmel**, D. Lobser, P. Maunz. Experimental demonstration of cheap and accurate phase estimation. Arxiv:1702.01763. (Accepted to *Phylscal Review Letters*.)
- S. Kimmel, C. Y. Y. Lin, G. H. Low, M. Ozols, T. J. Yoder. Hamiltonian Simulation with Optimal Sample Complexity. *Nature Partner Journals Quantum Information*, vol 3, no 13, 2017. Arxiv:1608.00281.
- E. Farhi, **S. Kimmel,** K. Temme. A Quantum Version of Schöning's Algorithm Applied to Quantum 2-SAT. *Quantum Information and Computation*. Vol 16, no 13-14. 2016. pp1212-1227. Arxiv:1603.06985.
- B. Fefferman, **S. Kimmel.** Quantum vs Classical Proofs and Subset Verification. Arxiv:1510.06750.
- S. Kimmel, Y.-K. Liu. Quantum Compressed Sensing Using 2-Designs. Arxiv:1510.08887. (Accepted to SAMPTA 2017.)
- S. Kimmel, C. Y. Y. Lin, H. H. Lin. Oracles with Costs. *Proceedings of Theory of Quantum Computing 2015.* pp 1-26. Arxiv:1502.02174
- B. R. Johnson, M. P. da Silva, C. A. Ryan, S. Kimmel, J. M. Chow, T. A. Ohki. Demonstration of Robust Quantum Gate Tomography via Randomized Benchmarking. New Journal of Physics 17 (11), 113019. 2015.
- S. Kimmel, G. H. Low, T. J. Yoder. Robust calibration of a universal single-qubit gate set via robust phase estimation. *Phys. Rev. A* 92 (6), 062315.
- S. Kimmel, M. P. da Silva, C. Ryan, B. Johnson, T, Ohki. Robust Extraction of Tomographic Information via Randomized Benchmarking. In *Physical Review X*, 2014, vol 4, n 1, pp 011050.
- A. M. Childs, **S. Kimmel**, R. Kothari. The Quantum Query Complexity of Read-Many Formulas. *Proceedings of ESA 2013*, pp 337-348.
- S. Kimmel. Quantum Adversary (Upper) Bound. Chicago Journal of Theoretical Computer Science, vol 2013 n 4. And Proceedings of ICALP. 2012 pp 557-568.
- B. Zhan, **S. Kimmel**, A. Hassidim. Super-polynomial Quantum Speed-ups for Boolean Evaluation Trees with Hidden Structure. *Proceedings of ITCS*, pp 249-265. 2012
- S. Bandyopadhyay, G. Brassard, **S. Kimmel**, W. Wootters. Entanglement Cost of Nonlocal Measurements. *Phys. Rev. A.* vol 80, n 1, pp 012313, 2009.
- J. Pasachoff, **S. Kimmel**, M. Druckmuller, V. Rusin, M. Saniga. The April 8, 2005 Eclipse White-light Corona. *Solar Physics*. vol 238, n 2, pp 261-270, 2006.